Suppr超能文献

用于戊醛糖呋喃糖和甲基戊醛糖呋喃糖苷的CHARMM德鲁德极化力场。

CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.

作者信息

Jana Madhurima, MacKerell Alexander D

机构信息

†Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street HSF II, Baltimore, Maryland 21201, United States.

‡Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.

出版信息

J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.

Abstract

An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols, and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, whereas for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules.

摘要

提出了一种基于经典德鲁德振子的戊呋喃糖和甲基戊呋喃糖苷的经验全原子CHARMM可极化力场。通过优化从醚、醇和己吡喃糖转移来的现有静电和键合参数,为戊呋喃糖的八种不同非对映异构体开发了单一静电模型,以重现量子力学(QM)偶极矩、呋喃糖 - 水相互作用能和构象能。对选定的静电和二面角参数进行优化,以生成甲基戊呋喃糖苷的模型。通过重现晶体分子内几何结构和晶格晶胞参数、水相密度以及从NMR实验获得的环皱曲和环外旋转异构体群体的实验数据,测试了该模型的准确性。在大多数情况下,发现该模型能以优异的方式重现QM数据和实验可观测量,而对于其余情况,一致性水平处于令人满意的范围。在水相模拟中,与气相相比,单糖的偶极矩显著增强。本研究的最终模型可用于未来关于碳水化合物的研究,并且可与现有的用于生物分子的CHARMM德鲁德可极化力场一起使用。

相似文献

1
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.
3
Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.
J Phys Chem B. 2011 Jan 27;115(3):580-96. doi: 10.1021/jp1092338. Epub 2010 Dec 17.
4
Polarizable empirical force field for hexopyranose monosaccharides based on the classical Drude oscillator.
J Phys Chem B. 2015 Jan 22;119(3):637-52. doi: 10.1021/jp412696m. Epub 2014 Feb 24.
5
Drude Polarizable Force Field Parametrization of Carboxylate and -Acetyl Amine Carbohydrate Derivatives.
J Chem Theory Comput. 2019 Sep 10;15(9):4982-5000. doi: 10.1021/acs.jctc.9b00327. Epub 2019 Aug 29.
6
Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
J Chem Theory Comput. 2020 May 12;16(5):3221-3239. doi: 10.1021/acs.jctc.0c00057. Epub 2020 Apr 27.
7
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.
9
CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses.
J Chem Theory Comput. 2018 Jun 12;14(6):3132-3143. doi: 10.1021/acs.jctc.8b00175. Epub 2018 May 4.
10
Balancing the interactions of ions, water, and DNA in the Drude polarizable force field.
J Phys Chem B. 2014 Jun 19;118(24):6742-57. doi: 10.1021/jp503469s. Epub 2014 Jun 9.

引用本文的文献

1
Refinement of the Drude Polarizable Force Field for Hexose Monosaccharides: Capturing Ring Conformational Dynamics with Enhanced Accuracy.
J Chem Theory Comput. 2024 Oct 22;20(20):9161-9177. doi: 10.1021/acs.jctc.4c00656. Epub 2024 Oct 9.
2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
3
Development of AMOEBA Polarizable Force Field for Rare-Earth La Interaction with Bioinspired Ligands.
J Phys Chem B. 2023 Feb 16;127(6):1367-1375. doi: 10.1021/acs.jpcb.2c07237. Epub 2023 Feb 3.
4
Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins.
J Phys Chem B. 2022 Sep 8;126(35):6642-6653. doi: 10.1021/acs.jpcb.2c04245. Epub 2022 Aug 25.
5
Automation of AMOEBA polarizable force field for small molecules: Poltype 2.
J Comput Chem. 2022 Sep 5;43(23):1530-1542. doi: 10.1002/jcc.26954. Epub 2022 Jul 1.
8
Three-Dimensional Structures of Carbohydrates and Where to Find Them.
Int J Mol Sci. 2020 Oct 18;21(20):7702. doi: 10.3390/ijms21207702.
10
Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
J Chem Theory Comput. 2020 May 12;16(5):3221-3239. doi: 10.1021/acs.jctc.0c00057. Epub 2020 Apr 27.

本文引用的文献

3
Polarizable Force Fields:  History, Test Cases, and Prospects.
J Chem Theory Comput. 2007 Nov;3(6):2034-45. doi: 10.1021/ct700127w.
4
Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers.
J Chem Theory Comput. 2007 May;3(3):1120-33. doi: 10.1021/ct600350s.
5
6
Conformational Studies of Methyl β-d-Arabinofuranoside Using the AMBER/GLYCAM Approach.
J Chem Theory Comput. 2009 Feb 10;5(2):430-8. doi: 10.1021/ct800384h.
8
Robustness in the fitting of molecular mechanics parameters.
J Comput Chem. 2015 May 30;36(14):1083-101. doi: 10.1002/jcc.23897. Epub 2015 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验