Jana Madhurima, MacKerell Alexander D
†Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street HSF II, Baltimore, Maryland 21201, United States.
‡Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.
An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols, and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, whereas for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules.
提出了一种基于经典德鲁德振子的戊呋喃糖和甲基戊呋喃糖苷的经验全原子CHARMM可极化力场。通过优化从醚、醇和己吡喃糖转移来的现有静电和键合参数,为戊呋喃糖的八种不同非对映异构体开发了单一静电模型,以重现量子力学(QM)偶极矩、呋喃糖 - 水相互作用能和构象能。对选定的静电和二面角参数进行优化,以生成甲基戊呋喃糖苷的模型。通过重现晶体分子内几何结构和晶格晶胞参数、水相密度以及从NMR实验获得的环皱曲和环外旋转异构体群体的实验数据,测试了该模型的准确性。在大多数情况下,发现该模型能以优异的方式重现QM数据和实验可观测量,而对于其余情况,一致性水平处于令人满意的范围。在水相模拟中,与气相相比,单糖的偶极矩显著增强。本研究的最终模型可用于未来关于碳水化合物的研究,并且可与现有的用于生物分子的CHARMM德鲁德可极化力场一起使用。