Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.
Brain. 2012 Nov;135(Pt 11):3251-64. doi: 10.1093/brain/aws178. Epub 2012 Jul 20.
The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotrauma.
神经血管单元为循环系统和中枢神经系统之间提供了一个动态界面。神经血管完整性的破坏发生在许多脑部疾病中,包括神经创伤和缺血性中风。组织型纤溶酶原激活物是一种丝氨酸蛋白酶,可将纤溶酶原转化为纤溶酶,纤溶酶可溶解血栓。除了在纤维蛋白溶解中的作用外,组织型纤溶酶原激活物在大脑中大量表达,在大脑中它介导细胞外蛋白水解。然而,具有蛋白水解活性的组织型纤溶酶原激活物也会促进缺血性中风后的神经血管破坏;该过程的分子机制仍不清楚。组织型纤溶酶原激活物被丝氨酸蛋白酶抑制剂(丝氨酸蛋白酶抑制剂)天然抑制:纤溶酶原激活物抑制剂-1、神经丝氨酸蛋白酶或蛋白酶神经素-1,导致丝氨酸蛋白酶抑制剂:蛋白酶复合物的形成。蛋白酶和丝氨酸蛋白酶抑制剂:蛋白酶复合物通过与低密度脂蛋白受体的高亲和力结合而被清除,但它们与这些受体的结合也可以跨质膜传递细胞外信号。基质金属蛋白酶是哺乳动物大脑中的第二大蛋白水解系统,与组织型纤溶酶原激活物一样,对神经功能至关重要,但在损伤后也可以降解神经血管单元的结构。在此,我们显示组织型纤溶酶原激活物以剂量依赖性方式增强神经创伤小鼠模型中的神经血管损伤。令人惊讶的是,纤溶酶原激活物抑制剂-1给药后抑制其活性会显著增加脑血管通透性。这导致我们发现脑实质中组织型纤溶酶原激活物与纤溶酶原激活物抑制剂-1形成复合物可促进创伤后脑血管损伤。我们证明,创伤后,该复合物与低密度脂蛋白受体结合,触发基质金属蛋白酶-3的诱导。因此,基质金属蛋白酶-3的药理学抑制可减轻受伤小鼠的神经血管通透性并改善其神经功能。我们的结果具有临床相关性,因为创伤患者脑脊液中的组织型纤溶酶原激活物:纤溶酶原激活物抑制剂-1复合物和基质金属蛋白酶-3的浓度显着升高,并与神经功能结局相关。在另一项研究中,我们发现患有神经创伤的患者的脑组织中基质金属蛋白酶-3和白蛋白(一种脑血管损伤的标志物)显着增加。神经血管稳态的破坏导致水肿、炎症和细胞死亡,是创伤后急性和长期神经功能障碍的重要原因。组织型纤溶酶原激活物-基质金属蛋白酶轴在神经创伤后促进神经血管破坏的作用尚未被描述。靶向组织型纤溶酶原激活物:纤溶酶原激活物抑制剂-1复合物信号或下游基质金属蛋白酶-3诱导可能为减少神经创伤后的脑血管通透性提供可行的治疗策略。