Suppr超能文献

四氢萘麝香和茚满麝香的气味-结构关系研究。

Odor-structure relationship studies of tetralin and indan musks.

机构信息

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.

出版信息

Chem Senses. 2012 Oct;37(8):723-36. doi: 10.1093/chemse/bjs058. Epub 2012 Jul 23.

Abstract

A list of 147 tetralin- and indan-like compounds was compiled from the literature for investigating the relationship between molecular structure and musk odor. Each compound in the data set was represented by 374 CODESSA and 970 TAE descriptors. A genetic algorithm (GA) for pattern recognition analysis was used to identify a subset of molecular descriptors that could differentiate musks from nonmusks in a plot of the two largest principal components (PCs) of the data. A PC map of the 110 compounds in the training set using 45 molecular descriptors identified by the pattern recognition GA revealed an asymmetric data structure. Tetralin and indan musks were found to occupy a small, but well-defined region of the PC (descriptor) space, with the nonmusks randomly distributed in the PC plot. A three-layer feed-forward neural network trained by back propagation was used to develop a discriminant that correctly classified all the compounds in the training set as musk or nonmusk. The neural network was successfully validated using an external prediction of 37 compounds.

摘要

从文献中编译了一份包含 147 种四氢萘和茚满类化合物的清单,用于研究分子结构与麝香气味之间的关系。数据集的每个化合物都由 374 个 CODESSA 和 970 个 TAE 描述符表示。遗传算法(GA)用于模式识别分析,以确定一组分子描述符,这些描述符可以在数据的两个最大主成分(PC)的图中区分麝香和非麝香。使用模式识别 GA 识别的 45 个分子描述符对训练集中的 110 种化合物进行的 PC 映射显示出不对称的数据结构。发现四氢萘和茚满麝香占据了 PC(描述符)空间的一个小但定义明确的区域,而非麝香则随机分布在 PC 图中。使用反向传播训练的三层前馈神经网络被用于开发一个判别器,该判别器可以正确地将训练集中的所有化合物分类为麝香或非麝香。该神经网络成功地使用 37 种化合物的外部预测进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验