Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-CEA-UEVE, Evry, France.
Phys Chem Chem Phys. 2012 Sep 7;14(33):11724-36. doi: 10.1039/c2cp41379e. Epub 2012 Jul 24.
In this paper we report different theoretical approaches to study the gas-phase unimolecular dissociation of the doubly-charged cation Ca(urea), in order to rationalize recent experimental findings. Quantum mechanical plus molecular mechanical (QM/MM) direct chemical dynamics simulations were used to investigate collision induced dissociation (CID) and rotational-vibrational energy transfer for Ar + Ca(urea) collisions. For the picosecond time-domain of the simulations, both neutral loss and Coulomb explosion reactions were found and the differences in their mechanisms elucidated. The loss of neutral urea subsequent to collision with Ar occurs via a shattering mechanism, while the formation of two singly-charged cations follows statistical (or almost statistical) dynamics. Vibrational-rotational energy transfer efficiencies obtained for trajectories that do not dissociate during the trajectory integration were used in conjunction with RRKM rate constants to approximate dissociation pathways assuming complete intramolecular vibrational energy redistribution (IVR) and statistical dynamics. This statistical limit predicts, as expected, that at long time the most stable species on the potential energy surface (PES) dominate. These results, coupled with experimental CID from which both neutral loss and Coulomb explosion products were obtained, show that the gas phase dissociation of this ion occurs by multiple mechanisms leading to different products and that reactivity on the complicated PES is dynamically complex.
本文报道了几种不同的理论方法,用于研究[Ca(脲)]2+双电荷阳离子的气相单分子离解,以合理解释最近的实验发现。我们使用量子力学加分子力学(QM/MM)直接化学动力学模拟来研究 Ar+[Ca(脲)]2+碰撞诱导解离(CID)和转动-振动能量转移。对于模拟的皮秒时域,发现了中性损失和库仑爆炸反应,并阐明了它们机制的差异。中性脲在与 Ar 碰撞后发生中性损失,是通过粉碎机制,而形成两个单电荷阳离子则遵循统计(或几乎统计)动力学。对于在轨迹积分过程中不发生解离的轨迹,我们使用获得的振动-转动能量转移效率与 RRKM 速率常数相结合,假设完全的分子内振动能量重新分布(IVR)和统计动力学,来近似解离途径。这种统计极限预测,正如预期的那样,在长时间后,势能面上(PES)最稳定的物种占主导地位。这些结果,结合从中获得中性损失和库仑爆炸产物的实验 CID,表明这种离子的气相解离通过多种机制导致不同的产物,并且复杂 PES 上的反应动力学非常复杂。