Clyde and Helen Wu Center for Molecular Cardiology, Department of Physiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
Circ Res. 2012 Aug 31;111(6):708-17. doi: 10.1161/CIRCRESAHA.112.273342. Epub 2012 Jul 24.
Atrial fibrillation (AF) is the most common cardiac arrhythmia, however the mechanism(s) causing AF remain poorly understood and therapy is suboptimal. The ryanodine receptor (RyR2) is the major calcium (Ca2+) release channel on the sarcoplasmic reticulum (SR) required for excitation-contraction coupling in cardiac muscle.
In the present study, we sought to determine whether intracellular diastolic SR Ca2+ leak via RyR2 plays a role in triggering AF and whether inhibiting this leak can prevent AF.
We generated 3 knock-in mice with mutations introduced into RyR2 that result in leaky channels and cause exercise induced polymorphic ventricular tachycardia in humans [catecholaminergic polymorphic ventricular tachycardia (CPVT)]. We examined AF susceptibility in these three CPVT mouse models harboring RyR2 mutations to explore the role of diastolic SR Ca2+ leak in AF. AF was stimulated with an intra-esophageal burst pacing protocol in the 3 CPVT mouse models (RyR2-R2474S+/-, 70%; RyR2-N2386I+/-, 60%; RyR2-L433P+/-, 35.71%) but not in wild-type (WT) mice (P<0.05). Consistent with these in vivo results, there was a significant diastolic SR Ca2+ leak in atrial myocytes isolated from the CPVT mouse models. Calstabin2 (FKBP12.6) is an RyR2 subunit that stabilizes the closed state of RyR2 and prevents a Ca2+ leak through the channel. Atrial RyR2 from RyR2-R2474S+/- mice were oxidized, and the RyR2 macromolecular complex was depleted of calstabin2. The Rycal drug S107 stabilizes the closed state of RyR2 by inhibiting the oxidation/phosphorylation induced dissociation of calstabin2 from the channel. S107 reduced the diastolic SR Ca2+ leak in atrial myocytes and decreased burst pacing-induced AF in vivo. S107 did not reduce the increased prevalence of burst pacing-induced AF in calstabin2-deficient mice, confirming that calstabin2 is required for the mechanism of action of the drug.
The present study demonstrates that RyR2-mediated diastolic SR Ca2+ leak in atrial myocytes is associated with AF in CPVT mice. Moreover, the Rycal S107 inhibited diastolic SR Ca2+ leak through RyR2 and pacing-induced AF associated with CPVT mutations.
心房颤动(AF)是最常见的心律失常,但导致 AF 的机制仍知之甚少,治疗效果也不理想。兰尼碱受体(RyR2)是肌浆网上的主要钙离子(Ca2+)释放通道,是心肌兴奋-收缩偶联所必需的。
本研究旨在探讨肌浆网内RyR2 介导的细胞内舒张期 SR Ca2+渗漏是否在触发 AF 中起作用,以及抑制这种渗漏是否可以预防 AF。
我们构建了 3 种带有突变的 RyR2 敲入小鼠,这些突变导致通道渗漏,并导致人类运动诱导的多形性室性心动过速(CPVT)。我们在这 3 种 RyR2 突变的 CPVT 小鼠模型中检测 AF 易感性,以探讨舒张期 SR Ca2+渗漏在 AF 中的作用。通过食管内爆发起搏方案刺激 AF 在 3 种 CPVT 小鼠模型(RyR2-R2474S+/-,70%;RyR2-N2386I+/-,60%;RyR2-L433P+/-,35.71%)中发生,但在野生型(WT)小鼠中未发生(P<0.05)。与这些体内结果一致,在 CPVT 小鼠模型的心房肌细胞中存在明显的舒张期 SR Ca2+渗漏。钙调蛋白结合蛋白 2(FKBP12.6)是一种 RyR2 亚基,可稳定 RyR2 的关闭状态并防止 Ca2+通过通道渗漏。来自 RyR2-R2474S+/-小鼠的心房 RyR2 被氧化,RyR2 大分子复合物中缺乏钙调蛋白结合蛋白 2。Rycal 药物 S107 通过抑制钙调蛋白结合蛋白 2 氧化/磷酸化诱导的从通道解离,稳定 RyR2 的关闭状态。S107 减少了心房肌细胞的舒张期 SR Ca2+渗漏,并降低了体内爆发起搏诱导的 AF。S107 并未降低钙调蛋白结合蛋白 2 缺乏小鼠中爆发起搏诱导的 AF 的发生率增加,这证实钙调蛋白结合蛋白 2 是该药物作用机制所必需的。
本研究表明,CPVT 小鼠心房肌细胞中 RyR2 介导的舒张期 SR Ca2+渗漏与 AF 相关。此外,Rycal S107 通过 RyR2 抑制舒张期 SR Ca2+渗漏,并抑制与 CPVT 突变相关的起搏诱导的 AF。