National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan.
J Phys Chem B. 2012 Aug 23;116(33):10089-97. doi: 10.1021/jp3041814. Epub 2012 Aug 10.
Ionic mobility of electrolyte materials is essentially determined by the nanoscale interactions, the ion-ion interactions and ion-solvent interactions. We quantitatively evaluated the interactive situation of the lithium polymer gel electrolytes through the measurements of ionic conductivity and diffusion coefficients of the mobile species of the lithium polymer electrolytes. The interactive force between the cation and anion in the gel depended on the mixing ratio of the binary solvent, ethylene carbonate plus dimethyl carbonate (EC/DMC). The gel with the solvent (3:7 EC:DMC) showed minimal cation-anion interaction, which is the cause of the highest ionic mobility compared with those of the other gels with different solvents. This suggests that the cation-anion interaction does not simply depend on the dielectric constant of the solvent but is associated with the solvation condition of the lithium. In the case of the gel with the 3:7 EC/DMC solvent, most of the EC species strongly coordinate to a lithium ion, forming the stable solvated lithium, Li(EC)(3)(+), and there are no residual EC species for exchange with them. As a result, the solvating EC species would be a barrier that restricts the anion attack to the lithium leading to the smallest cation-anion interaction. On the other hand, interaction between the cation and polar sites, hydroxyl and oxygen groups of ether of the polyvinyl butyral (PVB) and polyethylene oxide (PEO) polymer, respectively, in the gels was another dominant factor responsible for cation mobility. It increased with increasing polar site concentration per lithium. In case of the PVB gels, cation-anion interaction increased with an increasing polymer fraction of the gel contrary to the independent feature of PEO gels with the change of the polymer fraction. This indicates that the cation-anion interaction is associated with the polymer structure of the gel characterized by the kind and configuration of polar groups, molecular weight, and network morphology of the polymer.
电解质材料的离子迁移率本质上取决于纳米尺度的相互作用,即离子-离子相互作用和离子-溶剂相互作用。我们通过测量锂离子聚合物电解质的离子电导率和移动物种的扩散系数,定量评估了锂聚合物凝胶电解质的相互作用情况。凝胶中阳离子和阴离子之间的相互作用力取决于二元溶剂碳酸乙烯酯和碳酸二甲酯(EC/DMC)的混合比。具有溶剂(3:7 EC:DMC)的凝胶表现出最小的阳离子-阴离子相互作用,这是与具有不同溶剂的其他凝胶相比具有最高离子迁移率的原因。这表明阳离子-阴离子相互作用不单纯取决于溶剂的介电常数,而是与锂离子的溶剂化条件有关。在具有 3:7 EC/DMC 溶剂的凝胶的情况下,大多数 EC 物种强烈地与锂离子配位,形成稳定的溶剂化锂离子 Li(EC)(3)(+),并且没有剩余的 EC 物种可供交换。因此,溶剂化的 EC 物种将成为限制阴离子攻击锂离子的障碍,导致阳离子-阴离子相互作用最小。另一方面,在凝胶中,阳离子与聚(乙烯基丁醛)(PVB)和聚(氧化乙烯)(PEO)聚合物的醚中的极性位点、羟基和氧基团之间的相互作用分别是影响阳离子迁移率的另一个主要因素。它随着每锂离子的极性位点浓度的增加而增加。在 PVB 凝胶的情况下,阳离子-阴离子相互作用随着凝胶中聚合物分数的增加而增加,这与聚合物分数变化时 PEO 凝胶的独立特性相反。这表明阳离子-阴离子相互作用与凝胶的聚合物结构有关,其特征在于极性基团的种类和构型、聚合物的分子量和网络形态。