Suppr超能文献

单分子成像方法研究膜蛋白的计量学

Single molecule imaging approach to membrane protein stoichiometry.

机构信息

Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.

出版信息

Microsc Microanal. 2012 Aug;18(4):771-80. doi: 10.1017/S1431927612001195. Epub 2012 Jul 26.

Abstract

Recent technical advances have enabled the imaging of single fluorescent molecules. The application of single molecule visualization techniques has opened up new avenues of experimentation in biology at the molecular level. In this article, we review the application of single fluorescent molecule visualization and analysis to an important problem, that of subunit stoichiometry in membrane proteins, with particular emphasis on our approach. Single fluorescent molecules, coupled to fluorescent proteins, are localized in the membranes of cells. The molecules are then exposed to continuous low-level excitation until their fluorescent emissions reach background levels. The high sensitivity of modern instrumentation has enabled direct observations of discrete step decreases in the fluorescence of single molecules, which represent the bleaching of single fluorophores. By counting the number of steps over a large number of single molecules, an average step count is determined from which the stoichiometry is deduced using a binomial model. We examined the stoichiometry of a protein, prestin, that is central to mammalian hearing. We discuss how we prepared, identified, and imaged single molecules of prestin. The methodological considerations behind our approach are described and compared to similar procedures in other laboratories.

摘要

近年来,技术的进步使得对单个荧光分子的成像成为可能。单分子可视化技术的应用在分子水平的生物学实验中开辟了新的途径。在本文中,我们回顾了将单荧光分子可视化和分析应用于一个重要问题的情况,即膜蛋白亚基的化学计量,特别强调了我们的方法。将与荧光蛋白偶联的单个荧光分子定位于细胞的膜中。然后,将这些分子暴露于持续的低水平激发下,直到它们的荧光发射达到背景水平。现代仪器的高灵敏度使得能够直接观察到单个分子荧光的离散阶跃式降低,这代表单个荧光团的漂白。通过对大量单个分子的阶跃数进行计数,可以从平均阶跃数中推断出化学计量比,使用二项式模型进行推断。我们检查了与哺乳动物听力有关的蛋白质 prestin 的化学计量比。我们讨论了如何准备、识别和成像 prestin 的单个分子。描述了我们方法背后的方法学考虑因素,并与其他实验室的类似程序进行了比较。

相似文献

1
Single molecule imaging approach to membrane protein stoichiometry.
Microsc Microanal. 2012 Aug;18(4):771-80. doi: 10.1017/S1431927612001195. Epub 2012 Jul 26.
2
The Single-Molecule Approach to Membrane Protein Stoichiometry.
Methods Mol Biol. 2016;1427:189-99. doi: 10.1007/978-1-4939-3615-1_11.
5
Prestin in HEK cells is an obligate tetramer.
J Neurophysiol. 2012 Jan;107(1):5-11. doi: 10.1152/jn.00728.2011. Epub 2011 Oct 5.
6
Varying label density allows artifact-free analysis of membrane-protein nanoclusters.
Nat Methods. 2016 Aug;13(8):661-4. doi: 10.1038/nmeth.3897. Epub 2016 Jun 13.
7
Tracking individual membrane proteins and their biochemistry: The power of direct observation.
Neuropharmacology. 2015 Nov;98:22-30. doi: 10.1016/j.neuropharm.2015.05.003. Epub 2015 May 18.
8
Stoichiometric analysis of protein complexes by cell fusion and single molecule imaging.
Sci Rep. 2020 Sep 10;10(1):14866. doi: 10.1038/s41598-020-71630-6.
9
Photoswitchable fluorophores for single-molecule localization microscopy.
Methods Mol Biol. 2013;950:131-51. doi: 10.1007/978-1-62703-137-0_9.
10
Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step.
Methods Mol Biol. 2017;1663:189-203. doi: 10.1007/978-1-4939-7265-4_16.

引用本文的文献

1
Gasdermin D cysteine residues synergistically control its palmitoylation-mediated membrane targeting and assembly.
EMBO J. 2024 Oct;43(19):4274-4297. doi: 10.1038/s44318-024-00190-6. Epub 2024 Aug 14.
2
Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10089-10094. doi: 10.1073/pnas.1709241114. Epub 2017 Sep 6.
3
Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes.
Biochim Biophys Acta. 2016 Mar;1858(3):457-466. doi: 10.1016/j.bbamem.2015.09.013. Epub 2015 Sep 12.
4
Determining absolute protein numbers by quantitative fluorescence microscopy.
Methods Cell Biol. 2014;123:347-65. doi: 10.1016/B978-0-12-420138-5.00019-7.

本文引用的文献

1
Prestin in HEK cells is an obligate tetramer.
J Neurophysiol. 2012 Jan;107(1):5-11. doi: 10.1152/jn.00728.2011. Epub 2011 Oct 5.
2
Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16962-7. doi: 10.1073/pnas.1112244108. Epub 2011 Sep 6.
3
Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells.
J Biol Chem. 2010 Dec 24;285(52):41135-42. doi: 10.1074/jbc.M110.177881. Epub 2010 Oct 20.
4
Prestin forms oligomer with four mechanically independent subunits.
Brain Res. 2010 May 28;1333:28-35. doi: 10.1016/j.brainres.2010.03.070. Epub 2010 Mar 27.
5
The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity.
Nat Struct Mol Biol. 2010 Jan;17(1):44-50. doi: 10.1038/nsmb.1738. Epub 2009 Dec 20.
6
The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers.
Nature. 2008 Nov 6;456(7218):116-20. doi: 10.1038/nature07338. Epub 2008 Sep 28.
7
Functional stoichiometry of the unitary calcium-release-activated calcium channel.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13668-73. doi: 10.1073/pnas.0806499105. Epub 2008 Aug 29.
8
Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
Neuron. 2008 May 8;58(3):333-9. doi: 10.1016/j.neuron.2008.02.028.
9
Protein folding studied by single-molecule FRET.
Curr Opin Struct Biol. 2008 Feb;18(1):16-26. doi: 10.1016/j.sbi.2007.12.003. Epub 2008 Jan 24.
10
Cochlear outer hair cell motility.
Physiol Rev. 2008 Jan;88(1):173-210. doi: 10.1152/physrev.00044.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验