Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
Cell Rep. 2012 Feb 23;1(2):155-66. doi: 10.1016/j.celrep.2011.12.006. Epub 2012 Feb 9.
Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (<10 mV) and broad time courses (>5 ms). Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern.
几种类型的视网膜中间神经元表现出峰电位,但缺乏轴突。这样的神经元之一是 AII 无轴突型双极细胞,在该细胞中,记录在胞体上的峰电位表现出小的幅度(<10 mV)和宽的时间过程(>5 ms)。在这里,我们使用电生理记录和计算分析来研究这种非典型峰电位产生的机制。我们发现,胞体峰电位可能代表在单个电紧张遥远的树突隔室内引发的大而短暂的动作电位样事件。在同一隔室内,峰电位经历缓慢的调制,可能是由 M 型 K 电导引起的。该隔室的结构相关物是从主树突延伸出的细神经突:局部应用 TTX 到该神经突,或切除它,可消除峰电位。因此,无轴突 AII 的生理学比从形态描述和胞体记录中所预期的要复杂得多;特别是,AII 具有控制其放电模式的单个树突结构。