Suppr超能文献

用概率型元胞自动机研究天体生物学的复杂性。

Astrobiological complexity with probabilistic cellular automata.

机构信息

Astronomical Observatory Belgrade, Volgina 7, 11160 Belgrade-74, Serbia.

出版信息

Orig Life Evol Biosph. 2012 Aug;42(4):347-71. doi: 10.1007/s11084-012-9293-2. Epub 2012 Jul 26.

Abstract

The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

摘要

寻找外星生命和智慧是科学的主要努力之一,但迄今为止,只有很少的定量模型是以粗略和肤浅的方式进行的。我们认为,概率细胞自动机(PCA)是建模银河系及其可居住区的最佳定量框架。相关的天体生物学参数应建模为 PCA 内核输入概率矩阵的元素。通过细胞自动机结构的基本简单性,这种方法可以快速分析输入参数的大而模糊的空间。我们对具有“哥白尼”输入参数选择的典型天体生物学历史进行了简单的聚类分析,并讨论了对于规划和指导经验天体生物学和 SETI 项目具有实际重要性的相关边界条件。除了展示当前框架如何适应更复杂的情况和来自当前和未来近地空间任务的更新观测数据库外,我们还展示了数值结果如何为继续进行实际的 SETI 搜索提供谨慎的理由。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验