Department of Plant Biology, Institute of Biology, CP 6109, State University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil.
Plant Cell Physiol. 2012 Sep;53(9):1607-16. doi: 10.1093/pcp/pcs104. Epub 2012 Jul 25.
Nitrate reductase (NR) activity is necessary for the synthesis of nitric oxide (NO), a key signaling molecule in plants. Here, we investigated the effect of NR deficiency on NO production and phenylpropanoid metabolism of Arabidopsis thaliana leaves. HPLC-mass spectrometry analysis showed that the NR double mutant (nia1 nia2) is deficient in the synthesis of sinapoylmalate (SM), the main phenylpropanoid end-product in wild-type leaves, resulting in accumulation of its precursor sinapoylglucose (SG). While real-time PCR analysis revealed no significant difference at the transcript level, sinapoylglucose:malate sinapoyltransferase (SMT) activity in leaf extracts was reduced in the mutant compared with the wild type. The low levels of SM in nia1 nia2 leaves do not result from the deficient nitrogen incorporation into amino acids, since the recovery of the amino acid content of nia1 nia2 by irrigating the plants with glutamine did not change the metabolic profile of this mutant. In contrast, an increased supply of nitrate stimulated NR activity and NO production, and enhanced SM and decreased SG levels in both genotypes. Nevertheless, sinapic acid esters in nia1 nia2 were not recovered when compared with those detected in the leaves of the wild-type plant. Mutant plants grown in medium supplemented with malate and an NO donor recovered SM to the levels of wild-type leaves. Overall, the results suggest that SMT activity is dependent on the NR-dependent steady-state levels of NO during plant development.
硝酸还原酶(NR)活性是植物中一氧化氮(NO)合成所必需的,NO 是一种关键的信号分子。在这里,我们研究了 NR 缺失对拟南芥叶片中 NO 产生和苯丙素代谢的影响。HPLC-质谱分析表明,NR 双突变体(nia1 nia2)缺乏合成芥子酰基苹果酸(SM)的能力,SM 是野生型叶片中主要的苯丙素终产物,导致其前体芥子酰基葡萄糖(SG)的积累。虽然实时 PCR 分析显示在转录水平上没有显著差异,但与野生型相比,突变体叶片提取物中的芥子酰基葡萄糖:苹果酸芥子酰基转移酶(SMT)活性降低。nia1 nia2 叶片中 SM 水平低并非由于氮掺入氨基酸的不足所致,因为用谷氨酰胺灌溉植物恢复 nia1 nia2 的氨基酸含量并未改变该突变体的代谢谱。相反,增加硝酸盐的供应会刺激 NR 活性和 NO 产生,并增强两种基因型中 SM 的含量和 SG 的含量降低。然而,与野生型植物叶片中检测到的相比,nia1 nia2 中的芥子酸酯并没有恢复。在补充有苹果酸和 NO 供体的培养基中生长的突变体植物将 SM 恢复到野生型叶片的水平。总体而言,结果表明 SMT 活性依赖于植物发育过程中 NR 依赖性的 NO 稳态水平。