Suppr超能文献

多人模拟非侵入性跌倒检测。

Simulated unobtrusive falls detection with multiple persons.

机构信息

Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

出版信息

IEEE Trans Biomed Eng. 2012 Nov;59(11):3185-96. doi: 10.1109/TBME.2012.2209645. Epub 2012 Jul 19.

Abstract

One serious issue related to falls among the elderly living at home or in a residential care facility is the "long lie" scenario, which involves being unable to get up from the floor after a fall for 60 min or more. This research uses a simulated environment to investigate the potential effectiveness of using wireless ambient sensors (dual-technology (microwave/infrared) motion detectors and pressure mats) to track the movement of multiple persons and to unobtrusively detect falls when they occur, therefore reducing the rate of occurrence of "long lie" scenarios. A path-finding algorithm (A*) is used to simulate the movement of one or more persons through the residential area. For analysis, the sensor network is represented as an undirected graph, where nodes in the graph represent sensors, and edges between nodes in the graph imply that these sensors share an overlapping physical region in their area of sensitivity. A second undirected graph is used to represent the physical adjacency of the sensors (even where they do not overlap in their monitored regions). These graphical representations enable the tracking of multiple subjects/groups within the environment, by analyzing the sensor activation and adjacency profiles, hence allowing individuals/groups to be isolated when multiple persons are present, and subsequently monitoring falls events. A falls algorithm, based on a heuristic decision tree classifier model, was tested on 15 scenarios, each including one or more persons; three scenarios of activity of daily living, and 12 different types of falls (four types of fall, each with three postfall scenarios). The sensitivity, specificity, and accuracy of the falls algorithm are 100.00%, 77.14%, and 89.33%, respectively.

摘要

一个与居家或养老院老年人跌倒相关的严重问题是“长时间卧床不起”的情况,即跌倒后 60 分钟或更长时间无法从地板上站起来。本研究使用模拟环境来研究使用无线环境传感器(双技术(微波/红外)运动探测器和压力垫)来跟踪多人运动并在发生跌倒时进行非侵入式检测的潜在有效性,从而降低“长时间卧床不起”情况的发生率。使用路径查找算法 (A*) 模拟一个或多个人在居住区域内的移动。为了进行分析,传感器网络表示为无向图,其中图中的节点表示传感器,图中节点之间的边表示这些传感器在其敏感区域中共享重叠的物理区域。第二个无向图用于表示传感器的物理邻接关系(即使它们在监测区域中不重叠)。这些图形表示形式使我们能够通过分析传感器的激活和邻接情况来跟踪环境中的多个主体/群体,从而允许在存在多个人时隔离个人/群体,并随后监测跌倒事件。基于启发式决策树分类器模型的跌倒算法在 15 个场景中进行了测试,每个场景包括一个或多个人;三个日常生活活动场景和 12 种不同类型的跌倒(四种跌倒,每种跌倒有三个跌倒后场景)。跌倒算法的灵敏度、特异性和准确性分别为 100.00%、77.14%和 89.33%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验