Suppr超能文献

植物 14-3-3 蛋白在应对磷缺乏中的智能作用。

Smart role of plant 14-3-3 proteins in response to phosphate deficiency.

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.

出版信息

Plant Signal Behav. 2012 Aug;7(8):1047-8. doi: 10.4161/psb.20997. Epub 2012 Jul 27.

Abstract

Higher plants adapt to phosphorus deficiency through a complex of biological processes. Among of them, two adaptive processes are very important for the response of higher plants to phosphorus deficiency. One is the enhancement of root growth by regulating carbohydrate metabolism and allocation, and the other is rhizosphere acidification to acquire phosphorus efficiently from soil. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play the distinct roles in the adaption of plants to phosphorus deficiency by taking part in the two processes respectively. TFT6 which acts mainly in leaves is involved in the systemic response to phosphorus deficiency by regulating leaf carbon allocation and increasing phloem sucrose transport to promote root growth, while TFT7 directly functions in root by activating root plasma membrane H (+) -ATPase to release more protons under phosphorus deficiency. Based on these results, we propose that 14-3-3 proteins play the smart role in response to phosphorus deficiency in higher plants.

摘要

高等植物通过一系列复杂的生物学过程来适应磷缺乏。其中,有两个适应过程对高等植物响应磷缺乏非常重要。一个是通过调节碳水化合物代谢和分配来增强根系生长,另一个是根际酸化,以便从土壤中有效地获取磷。番茄 14-3-3 基因家族的两个不同成员 TFT6 和 TFT7 通过分别参与这两个过程,在植物对磷缺乏的适应中发挥不同的作用。主要在叶片中起作用的 TFT6 通过调节叶片碳分配和增加韧皮部蔗糖运输来促进根系生长,从而参与系统性响应磷缺乏,而 TFT7 则通过在磷缺乏时激活根质膜 H (+) -ATPase 释放更多质子直接在根中起作用。基于这些结果,我们提出 14-3-3 蛋白在高等植物响应磷缺乏中发挥了重要作用。

相似文献

1
Smart role of plant 14-3-3 proteins in response to phosphate deficiency.
Plant Signal Behav. 2012 Aug;7(8):1047-8. doi: 10.4161/psb.20997. Epub 2012 Jul 27.
2
TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress.
Plant Cell Environ. 2012 Aug;35(8):1393-406. doi: 10.1111/j.1365-3040.2012.02497.x. Epub 2012 Mar 8.
5
Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.
J Exp Bot. 2015 Apr;66(8):2271-81. doi: 10.1093/jxb/erv149. Epub 2015 Apr 6.
6
Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
J Integr Plant Biol. 2014 Mar;56(3):192-220. doi: 10.1111/jipb.12163. Epub 2014 Feb 26.
7
Root developmental adaptation to phosphate starvation: better safe than sorry.
Trends Plant Sci. 2011 Aug;16(8):442-50. doi: 10.1016/j.tplants.2011.05.006.
8
Metabolic adaptations of phosphate-starved plants.
Plant Physiol. 2011 Jul;156(3):1006-15. doi: 10.1104/pp.111.175281. Epub 2011 May 11.
10
Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants.
Plant Sci. 2018 Jun;271:108-116. doi: 10.1016/j.plantsci.2018.03.013. Epub 2018 Mar 14.

引用本文的文献

2
Harnessing belowground processes for sustainable intensification of agricultural systems.
Plant Soil. 2022;478(1-2):177-209. doi: 10.1007/s11104-022-05508-z. Epub 2022 Jun 22.
3
Effect of arbuscular mycorrhizal fungi and phosphorus on drought-induced oxidative stress and 14-3-3 proteins gene expression of .
Front Microbiol. 2022 Aug 11;13:934964. doi: 10.3389/fmicb.2022.934964. eCollection 2022.
4
Ca14-3-3 Interacts With CaWRKY58 to Positively Modulate Pepper Response to Low-Phosphorus Starvation.
Front Plant Sci. 2021 Jan 14;11:607878. doi: 10.3389/fpls.2020.607878. eCollection 2020.
6
Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress.
Planta. 2018 Jan;247(1):229-253. doi: 10.1007/s00425-017-2779-4. Epub 2017 Sep 27.
7
Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice.
Physiol Mol Biol Plants. 2016 Oct;22(4):515-522. doi: 10.1007/s12298-016-0382-y. Epub 2016 Oct 6.

本文引用的文献

1
TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress.
Plant Cell Environ. 2012 Aug;35(8):1393-406. doi: 10.1111/j.1365-3040.2012.02497.x. Epub 2012 Mar 8.
2
Signaling network in sensing phosphate availability in plants.
Annu Rev Plant Biol. 2011;62:185-206. doi: 10.1146/annurev-arplant-042110-103849.
3
Root apex transition zone: a signalling-response nexus in the root.
Trends Plant Sci. 2010 Jul;15(7):402-8. doi: 10.1016/j.tplants.2010.04.007. Epub 2010 Jun 2.
4
14-3-3 and FHA domains mediate phosphoprotein interactions.
Annu Rev Plant Biol. 2009;60:67-91. doi: 10.1146/annurev.arplant.59.032607.092844.
6
The 14-3-3 gene expression specificity in response to stress is promoter-dependent.
Plant Cell Physiol. 2005 Oct;46(10):1635-45. doi: 10.1093/pcp/pci179. Epub 2005 Aug 4.
8
Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions.
Mol Biol Cell. 2005 Apr;16(4):1735-43. doi: 10.1091/mbc.e04-09-0839. Epub 2005 Jan 19.
9
14-3-3 proteins and the response to abiotic and biotic stress.
Plant Mol Biol. 2002 Dec;50(6):1031-9. doi: 10.1023/a:1021261614491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验