Suppr超能文献

通过病毒诱导基因沉默解析 KATANIN 和 WRINKLED1 在棉花纤维发育中的功能。

Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing.

机构信息

Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore.

出版信息

Plant Physiol. 2012 Oct;160(2):738-48. doi: 10.1104/pp.112.198564. Epub 2012 Jul 26.

Abstract

Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.

摘要

世界上大多数天然纤维来自棉花(Gossypium spp.),它是全球重要的作物。鉴定调控棉花产量和纤维品质的基因有望促进天然纤维的可持续生产。尽管现在公共数据库中提供了大量的表达序列标签序列,但由于生成转基因棉花植物的效率低下,大规模的基因功能分析受到了阻碍。烟草脆裂病毒(TRV)最近被报道可在棉花叶片中引发病毒诱导的基因沉默(VIGS)。在这里,我们通过证明 TRV-VIGS 也可以在生殖器官中发挥作用,扩展了这种方法的用途。我们使用这种方法研究了 KATANIN 和 WRINKLED1 在棉花植物发育中的功能。表达抑制的 KATANIN 的棉花植株产生的纤维更短,种子油与胚乳的重量比升高。相比之下,WRINKLED1 表达的沉默导致纤维长度增加,但油种子含量降低,这表明通过重新分配碳流来增加纤维长度是可能的。我们的结果表明,TRV-VIGS 系统可用于快速分析参与棉花纤维发育的基因的功能。

相似文献

1
Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing.
Plant Physiol. 2012 Oct;160(2):738-48. doi: 10.1104/pp.112.198564. Epub 2012 Jul 26.
2
Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.
Methods Mol Biol. 2013;975:157-65. doi: 10.1007/978-1-62703-278-0_12.
3
Agrobacterium-mediated virus-induced gene silencing assay in cotton.
J Vis Exp. 2011 Aug 20(54):2938. doi: 10.3791/2938.
4
Tobacco Rattle Virus-Induced Gene Silencing in Cotton.
Methods Mol Biol. 2019;1902:105-119. doi: 10.1007/978-1-4939-8952-2_9.
5
Virus-induced gene silencing of fiber-related genes in cotton.
Methods Mol Biol. 2015;1287:219-34. doi: 10.1007/978-1-4939-2453-0_16.
6
Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus.
Mol Biotechnol. 2016 Jan;58(1):65-72. doi: 10.1007/s12033-015-9904-z.
7
GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production.
Plant Physiol Biochem. 2016 Dec;109:128-136. doi: 10.1016/j.plaphy.2016.09.009. Epub 2016 Sep 15.
9
A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response.
Plant Cell Rep. 2018 Aug;37(8):1091-1100. doi: 10.1007/s00299-018-2294-5. Epub 2018 Jun 4.

引用本文的文献

2
Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis.
Plants (Basel). 2025 Apr 12;14(8):1203. doi: 10.3390/plants14081203.
3
A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development.
BMC Genomics. 2025 Mar 6;26(1):221. doi: 10.1186/s12864-025-11360-z.
4
Seed-specific expression of AtWRI1 enhanced the yield of cotton seed oil.
Sci Rep. 2024 Dec 28;14(1):30750. doi: 10.1038/s41598-024-80684-9.
5
A novel gene silencing strategy based on tobacco rattle virus in .
PeerJ. 2024 Oct 7;12:e18211. doi: 10.7717/peerj.18211. eCollection 2024.
9
A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits.
Nat Genet. 2024 Mar;56(3):530-540. doi: 10.1038/s41588-024-01660-7. Epub 2024 Feb 20.

本文引用的文献

2
Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid.
Biotechnol Biofuels. 2012 Feb 29;5(1):10. doi: 10.1186/1754-6834-5-10.
3
Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality.
Plant Biotechnol J. 2012 Apr;10(3):301-12. doi: 10.1111/j.1467-7652.2011.00662.x. Epub 2011 Nov 2.
4
Agrobacterium-mediated virus-induced gene silencing assay in cotton.
J Vis Exp. 2011 Aug 20(54):2938. doi: 10.3791/2938.
5
Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12527-32. doi: 10.1073/pnas.1106502108. Epub 2011 Jun 27.
6
Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality.
Nat Biotechnol. 2011 May;29(5):453-8. doi: 10.1038/nbt.1843. Epub 2011 Apr 10.
7
Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt.
Plant J. 2011 Apr;66(2):293-305. doi: 10.1111/j.1365-313X.2011.04491.x. Epub 2011 Feb 21.
8
Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation.
Planta. 2010 Oct;232(5):1191-205. doi: 10.1007/s00425-010-1246-2. Epub 2010 Aug 14.
9
Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers.
Plant Cell Physiol. 2010 Aug;51(8):1276-90. doi: 10.1093/pcp/pcq086. Epub 2010 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验