Suppr超能文献

Interorgan glutamine flow regulation in metabolic acidosis.

作者信息

Tamarappoo B K, Joshi S, Welbourne T C

机构信息

Department of Physiology and Biophysics, Louisiana State University Medical Center, Shreveport.

出版信息

Miner Electrolyte Metab. 1990;16(5):322-30.

PMID:2283995
Abstract

The flow of glutamine to the kidneys is essential for generating base in response to acid loading yet neither the magnitude nor direction of this flow are normally supportive of renal ammoniagenesis. However, chronic metabolic acidosis sets in motion regulatory systems enhancing flow magnitude as well as redirecting glutamine from the splanchnic bed and ureagenesis to the kidneys for ammoniagenesis and bicarbonate generation. These mechanisms include organ-specific inductions of glutamine synthesizing and hydrolyzing enzymes at the source, muscle, and the destination, kidneys, respectively; organ-specific shifts in fluxes through competing metabolic pathways favoring glutamine formation at the expense of the ureagenic precursor alanine and unique interorgan regulation whereby upstream sites modulate subsequent downstream sites by setting the glutamine loads and the release of glutamine metabolites acting as metabolic signals. These extrarenal regulatory mechanisms act in concert making glutamine available at the expense of ureagenesis. The kidneys draw upon plasma glutamine, despite a 40% reduction in the arterial concentration, generating base in the form of renal venous bicarbonate and excreting nitrogen and protons as ammonium. Underlying this enormous renal extraction is a shift in the uptake mode from a load- to a transport-limited process closely associated with the filtered bicarbonate load. Finally the interorgan glutamine flow set in motion during acidosis can be acutely reversed, revealing a hierarchal interaction of system subserving acid base and nitrogen balance. Thus, the extraordinary responses exhibited in chronic metabolic acidosis provide a superb model for discerning regulatory systems in other physiological as well as pathophysiological conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验