Suppr超能文献

自动识别耳标和耳纹比对系统的开发。

The development of an automatic recognition system for earmark and earprint comparisons.

机构信息

Ecole des Sciences Criminelles, Institut de Police Scientifique, University of Lausanne, Lausanne, Switzerland.

出版信息

Forensic Sci Int. 2012 Oct 10;222(1-3):170-8. doi: 10.1016/j.forsciint.2012.05.021. Epub 2012 Jul 26.

Abstract

The value of earmarks as an efficient means of personal identification is still subject to debate. It has been argued that the field is lacking a firm systematic and structured data basis to help practitioners to form their conclusions. Typically, there is a paucity of research guiding as to the selectivity of the features used in the comparison process between an earmark and reference earprints taken from an individual. This study proposes a system for the automatic comparison of earprints and earmarks, operating without any manual extraction of key-points or manual annotations. For each donor, a model is created using multiple reference prints, hence capturing the donor within source variability. For each comparison between a mark and a model, images are automatically aligned and a proximity score, based on a normalized 2D correlation coefficient, is calculated. Appropriate use of this score allows deriving a likelihood ratio that can be explored under known state of affairs (both in cases where it is known that the mark has been left by the donor that gave the model and conversely in cases when it is established that the mark originates from a different source). To assess the system performance, a first dataset containing 1229 donors elaborated during the FearID research project was used. Based on these data, for mark-to-print comparisons, the system performed with an equal error rate (EER) of 2.3% and about 88% of marks are found in the first 3 positions of a hitlist. When performing print-to-print transactions, results show an equal error rate of 0.5%. The system was then tested using real-case data obtained from police forces.

摘要

耳标作为一种有效的个人识别手段的价值仍存在争议。有人认为,该领域缺乏一个坚实的系统和结构化的数据基础,无法帮助从业者得出结论。通常情况下,关于在将耳标与从个体上采集的参考耳纹进行比较过程中所使用特征的选择性,研究指导相对较少。本研究提出了一种自动比较耳纹和耳标的系统,无需手动提取关键点或手动注释即可运行。对于每个供体,使用多个参考打印件创建一个模型,从而捕获供体在源变异性内的信息。对于标记和模型之间的每次比较,图像都会自动对齐,并根据归一化的 2D 相关系数计算接近度得分。适当使用该分数可以得出似然比,可以在已知的情况下进行探索(既包括已知标记是由提供模型的供体留下的情况,也包括已知标记源自不同来源的情况)。为了评估系统性能,使用了包含在 FearID 研究项目中 1229 个供体的第一个数据集。基于这些数据,对于标记到打印的比较,系统的等错误率(EER)为 2.3%,约 88%的标记在命中列表的前 3 位中找到。当执行打印到打印的交易时,结果显示等错误率为 0.5%。然后,该系统使用从警察部队获得的实际案例数据进行了测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验