Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China.
Hum Mol Genet. 2012 Nov 1;21(21):4655-68. doi: 10.1093/hmg/dds307. Epub 2012 Jul 26.
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the loss of the fragile X mental retardation protein (FMRP). FMRP is a ubiquitously expressed, multi-domain RNA-binding protein, but its in vivo function remains poorly understood. Recent studies have shown that FMRP participates in cell cycle control during development. Here, we used Drosophila mutants to test if FMRP plays a role in DNA damage response under genotoxic stress. We found significantly fewer dfmr1 mutants survived to adulthood than wild-types following irradiation or exposure to chemical mutagens, demonstrating that the loss of drosophila FMRP (dFMRP) results in hypersensitivity to genotoxic stress. Genotoxic stress significantly reduced mitotic cells in wild-type brains, indicating the activation of a DNA damage-induced G2/M checkpoint, while mitosis was only moderately suppressed in dfmr1 mutants. Elevated expression of cyclin B, a protein critical for the G2 to M transition, was observed in the larval brains of dfmr1 mutants. CycB mRNA transcripts were enriched in the dFMRP-containing complex, suggesting that dFMRP regulates DNA damage-induced G2/M checkpoint by repressing CycB mRNA translation. Reducing CycB dose by half in dfmr1 mutants rescued the defective G2/M checkpoint and reversed hypersensitivity to genotoxic stress. In addition, dfmr1 mutants exhibited more DNA breaks and elevated p53-dependent apoptosis following irradiation. Moreover, a loss-of-heterozygosity assay showed decreased irradiation-induced genome stability in dfmr1 mutants. Thus, dFMRP maintains genome stability under genotoxic stress and regulates the G2/M DNA damage checkpoint by suppressing CycB expression.
脆性 X 综合征是最常见的遗传性智力障碍,由脆性 X 智力障碍蛋白 (FMRP) 的缺失引起。FMRP 是一种广泛表达的多结构域 RNA 结合蛋白,但它的体内功能仍知之甚少。最近的研究表明,FMRP 参与了发育过程中的细胞周期控制。在这里,我们使用果蝇突变体来测试 FMRP 是否在遗传毒性应激下参与 DNA 损伤反应。我们发现,与野生型相比,照射或暴露于化学诱变剂后,dfmr1 突变体存活到成年的数量明显减少,这表明果蝇 FMRP (dFMRP) 的缺失导致对遗传毒性应激的敏感性增加。遗传毒性应激显著减少了野生型大脑中的有丝分裂细胞,表明激活了 DNA 损伤诱导的 G2/M 检查点,而 dFMRP 突变体中的有丝分裂仅受到中度抑制。在 dfmr1 突变体的幼虫脑中观察到细胞周期蛋白 B (CycB) 的表达升高,CycB 是 G2 到 M 转换的关键蛋白。CycB mRNA 转录物在含有 dFMRP 的复合物中富集,表明 dFMRP 通过抑制 CycB mRNA 翻译来调节 DNA 损伤诱导的 G2/M 检查点。在 dfmr1 突变体中减少 CycB 剂量一半可挽救有缺陷的 G2/M 检查点并逆转对遗传毒性应激的敏感性。此外,dfmr1 突变体在照射后表现出更多的 DNA 断裂和升高的 p53 依赖性细胞凋亡。此外,杂合性丢失测定显示 dfmr1 突变体中照射诱导的基因组稳定性降低。因此,dFMRP 在遗传毒性应激下维持基因组稳定性,并通过抑制 CycB 表达来调节 G2/M DNA 损伤检查点。