Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
J Biol Chem. 2012 Sep 14;287(38):31973-82. doi: 10.1074/jbc.M112.348565. Epub 2012 Jul 26.
Recent high resolution x-ray structures of the β2-adrenergic receptor confirmed a close salt-bridge interaction between the suspected micro-switch residue ArgIII:26 (Arg3.50) and the neighboring AspIII:25 (Asp3.49). However, neither the expected "ionic lock" interactions between ArgIII:26 and GluVI:-06 (Glu6.30) in the inactive conformation nor the interaction with TyrV:24 (Tyr5.58) in the active conformation were observed in the x-ray structures. Here we find through molecular dynamics simulations, after removal of the stabilizing T4 lysozyme, that the expected salt bridge between ArgIII:26 and GluVI:-06 does form relatively easily in the inactive receptor conformation. Moreover, mutational analysis of GluVI:-06 in TM-VI and the neighboring AspIII:25 in TM-III demonstrated that these two residues do function as locks for the inactive receptor conformation as we observed increased G(s) signaling, arrestin mobilization, and internalization upon alanine substitutions. Conversely, TyrV:24 appears to play a role in stabilizing the active receptor conformation as loss of function of G(s) signaling, arrestin mobilization, and receptor internalization was observed upon alanine substitution of TyrV:24. The loss of function of the TyrV:24 mutant could partly be rescued by alanine substitution of either AspIII:25 or GluVI:-06 in the double mutants. Surprisingly, removal of the side chain of the ArgIII:26 micro-switch itself had no effect on G(s) signaling and internalization and only reduced arrestin mobilization slightly. It is suggested that ArgIII:26 is equally important for stabilizing the inactive and the active conformation through interaction with key residues in TM-III, -V, and -VI, but that the ArgIII:26 micro-switch residue itself apparently is not essential for the actual G protein activation.
最近β2-肾上腺素能受体的高分辨率 X 射线结构证实了疑似微开关残基 ArgIII:26(Arg3.50)与相邻 AspIII:25(Asp3.49)之间存在紧密的盐桥相互作用。然而,在 X 射线结构中既没有观察到非活性构象中 ArgIII:26 与 GluVI:-06(Glu6.30)之间预期的“离子锁”相互作用,也没有观察到活性构象中与 TyrV:24(Tyr5.58)的相互作用。在这里,我们通过分子动力学模拟发现,在去除稳定化的 T4 溶菌酶后,ArgIII:26 与 GluVI:-06 之间预期的盐桥相对容易形成于非活性受体构象中。此外,TM-VI 中的 GluVI:-06 和 TM-III 中的相邻 AspIII:25 的突变分析表明,这两个残基确实作为非活性受体构象的锁,因为我们观察到丙氨酸取代后 G(s)信号转导、视紫红质动员和内化增加。相反,TyrV:24 似乎在稳定活性受体构象中发挥作用,因为在 TyrV:24 的丙氨酸取代后观察到 G(s)信号转导、视紫红质动员和受体内化的功能丧失。TyrV:24 突变体的功能丧失部分可以通过 TM-III 和 TM-VI 中 AspIII:25 或 GluVI:-06 的丙氨酸取代的双突变体来挽救。令人惊讶的是,ArgIII:26 微开关自身侧链的去除对 G(s)信号转导和内化没有影响,仅略微降低视紫红质动员。这表明 ArgIII:26 通过与 TM-III、-V 和 -VI 中的关键残基相互作用,对稳定非活性和活性构象同样重要,但 ArgIII:26 微开关残基本身对于实际的 G 蛋白激活显然不是必需的。