Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany.
J Am Chem Soc. 2011 May 11;133(18):7159-65. doi: 10.1021/ja200545n. Epub 2011 Apr 20.
Rhodopsin, a seven transmembrane helix (TM) receptor, binds its ligand 11-cis-retinal via a protonated Schiff base. Coupling to the G-protein transducin (G(t)) occurs after light-induced cis/trans-retinal isomerization, which leads through photoproducts into a sequence of metarhodopsin (Meta) states: Meta I ⇌ Meta IIa ⇌ Meta IIb ⇌ Meta IIbH(+). The structural changes behind this three-step activation scheme are mediated by microswitch domains consisting of conserved amino acids. Here we focus on Tyr223(5.58) as part of the Y(5.58)X(7)K(R)(5.66) motif. Mutation to Ala, Phe, or Glu results in specific impairments of G(t)-activation measured by intrinsic G(t) fluorescence. UV-vis/FTIR spectroscopy of rhodopsin and its complex with a C-terminal G(t)α peptide allows the assignment of these deficiencies to specific steps in the activation path. Effects of mutation occur already in Meta I but do not directly influence deprotonation of the Schiff base during formation of Meta IIa. Absence of the whole phenol ring (Y223A) allows the activating motion of TM6 in Meta IIb but impairs the coupling to G(t). When only the hydroxyl group is lacking (Y223F), Meta IIb does not accumulate, but the activity toward G(t) remains substantial. From the FTIR features of Meta IIbH(+) we conclude that proton uptake to Glu134(3.49) is mandatory for Tyr223(5.58) to engage in the interaction with the key player Arg135(3.50) predicted by X-ray analysis. This polar interaction is partially recovered in Y223E, explaining its relatively high activity. Only the phenol side chain of tyrosine provides all characteristics for accumulation of the active state and G-protein activation.
视紫红质是一种七次跨膜螺旋(TM)受体,通过质子化的席夫碱与配体 11-顺式视黄醛结合。光诱导顺/反式视黄醛异构化后与 G 蛋白转导蛋白(G(t))偶联,这导致通过光产物进入一系列视紫红质(Meta)状态:Meta I ⇌ Meta IIa ⇌ Meta IIb ⇌ Meta IIbH(+)。这个三步激活方案背后的结构变化由由保守氨基酸组成的微开关结构域介导。在这里,我们专注于 Tyr223(5.58)作为 Y(5.58)X(7)K(R)(5.66)基序的一部分。突变到丙氨酸、苯丙氨酸或谷氨酸会导致通过固有 G(t)荧光测量的 G(t)激活特异性受损。视紫红质及其与 C 端 G(t)α肽复合物的紫外/可见/FTIR 光谱允许将这些缺陷分配到激活路径的特定步骤。突变的影响已经在 Meta I 中发生,但不会直接影响 Meta IIa 形成过程中席夫碱的去质子化。整个苯酚环缺失(Y223A)允许 TM6 在 Meta IIb 中进行激活运动,但会损害与 G(t)的偶联。当只有羟基缺失时(Y223F),Meta IIb 不会积累,但对 G(t)的活性仍然很大。从 Meta IIbH(+)的 FTIR 特征,我们得出结论,Glu134(3.49)的质子摄取对于 Tyr223(5.58)与 X 射线分析预测的关键参与者 Arg135(3.50)相互作用是必需的。这种极性相互作用在 Y223E 中部分恢复,解释了其相对较高的活性。只有酪氨酸的酚侧链提供了积累活性状态和 G 蛋白激活的所有特征。