Department of Biochemistry and the Wisconsin Bioenergy Initiative, ‡The DOE Great Lakes Bioenergy Research Center, and §Department of Biological Systems Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.
J Agric Food Chem. 2012 Aug 29;60(34):8272-7. doi: 10.1021/jf302140k. Epub 2012 Aug 10.
Dehydrodimerization of ferulates in grass cell walls provides a pathway toward cross-linking polysaccharide chains limiting the digestibility of carbohydrates by ruminant bacteria and in general affecting the utilization of grass as a renewable bioresource. Analysis of dehydrodiferulates (henceforth termed diferulates) in plant cell walls is useful in the evaluation of the quality of dairy forages as animal feeds. Therefore, there has been considerable demand for quantities of diferulates as standards for such analyses. Described here are syntheses of diferulates from ethyl ferulate via biomimetic radical coupling reactions using the copper(II)-tetramethylethylenediamine [CuCl(OH)-TMEDA] complex as oxidant or catalyst. Although CuCl(OH)-TMEDA oxidation of ethyl ferulate in acetonitrile produced mixtures composed of 8-O-4-, 8-5-, 8-8- (cyclic and noncyclic), and 5-5-coupled diferulates, a catalyzed oxidation using CuCl(OH)-TMEDA as catalyst and oxygen as an oxidant resulted in better overall yields of such diferulates. Flash chromatographic fractionation allowed isolation of 8-8- and 5-5-coupled diferulates. 8-5-Diferulate coeluted with 8-O-4-diferulate but was separated from it via crystallization; the 8-O-4 diferulate left in the mother solution was isolated by rechromatography following a simple tetrabutylammonium fluoride treatment that converted 8-5-diferulate to another useful diferulate, 8-5-(noncyclic) diferulate. Therefore, six of the nine (5-5, 8-O-4, 8-5-c, 8-5-nc, 8-5-dc, 8-8-c, 8-8-nc, 8-8-THF, 4-O-5) diferulic acids that have to date been found in the alkaline hydrolysates of plant cell walls can be readily synthesized by the CuCl(OH)-TMEDA catalyzed aerobic oxidative coupling reaction and subsequent saponification described here.
阿魏酸酯在草细胞壁中的去氢二聚作用提供了一种交联多糖链的途径,限制了反刍细菌对碳水化合物的消化,并且通常会影响草作为可再生生物资源的利用。分析植物细胞壁中的去氢阿魏酸酯(以下简称阿魏酸酯)对于评估奶牛饲料的牧草质量很有用。因此,人们对阿魏酸酯的需求量很大,将其作为此类分析的标准品。本文描述了通过使用铜(II)-四甲基乙二胺[CuCl(OH)-TMEDA]配合物作为氧化剂或催化剂的仿生自由基偶联反应,从阿魏酸乙酯合成阿魏酸酯。虽然在乙腈中用 CuCl(OH)-TMEDA 氧化阿魏酸乙酯产生了由 8-O-4-、8-5-、8-8-(环状和非环状)和 5-5-偶联阿魏酸酯组成的混合物,但使用 CuCl(OH)-TMEDA 作为催化剂和氧气作为氧化剂进行催化氧化可得到更好的总产率。快速色谱分离允许分离 8-8-和 5-5-偶联阿魏酸酯。8-5-阿魏酸酯与 8-O-4-阿魏酸酯共洗脱,但通过结晶将其与 8-O-4-阿魏酸酯分离;留在母液中的 8-O-4-阿魏酸酯通过简单的四丁基氟化铵处理分离,该处理将 8-5-阿魏酸酯转化为另一种有用的阿魏酸酯,8-5-(非环状)阿魏酸酯。因此,迄今为止在植物细胞壁的碱性水解产物中发现的 9 种阿魏酸酯中的 6 种(5-5、8-O-4、8-5-c、8-5-nc、8-5-dc、8-8-c、8-8-nc、8-8-THF、4-O-5)可以通过本文所述的 CuCl(OH)-TMEDA 催化有氧氧化偶联反应和随后的皂化反应轻易合成。