Suppr超能文献

基于偶氮苯酚硫脲的显色传感器对阴离子的识别:DFT 与分子动力学的联合研究。

Anion recognition by azophenol thiourea-based chromogenic sensors: a combined DFT and molecular dynamics investigation.

机构信息

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.

出版信息

J Mol Model. 2013 Jan;19(1):205-13. doi: 10.1007/s00894-012-1530-0. Epub 2012 Jul 31.

Abstract

The relative binding affinities of several anions towards 2-nitroazophenol thiourea-based receptors were studied using density functional theory (DFT) in the gas phase and in chloroform solvent via PCM calculations. Both receptors have five distinctive NH and OH hydrogen donor atoms. All receptor-anion complexes are characterized by five intermolecular hydrogen bonds. The binding free energies are strongly influenced by a dielectric medium, and the solvation effect alters the trend of anion binding to the receptor. The calculated order of anion binding affinity for the receptor in chloroform, H2PO4->AcO->F->Cl->HSO4->NO3-, is in excellent accord with experimental findings. The overall order of binding affinity is attributed to the basicity of the anion, the effect of solvation, and the number of proton acceptors available. Calculations of the NMR and UV-vis spectra strongly support the experimental characterization of the receptor-anion complexes. Explicit solvent molecular dynamics simulations of selected receptor-anion complexes were also carried out. Analysis of the structural descriptors revealed that the anions were strongly bound within the binding pocket via hydrogen-bonding interactions to the five receptor protons throughout the simulation.

摘要

使用密度泛函理论(DFT)在气相和氯仿溶剂中通过 PCM 计算研究了几种阴离子与 2-硝基偶氮苯酚硫脲基受体的相对结合亲和力。两个受体都有五个独特的 NH 和 OH 氢键供体原子。所有受体-阴离子复合物都具有五个分子间氢键。结合自由能强烈受到介电常数的影响,溶剂化效应改变了阴离子与受体结合的趋势。在氯仿中,受体对阴离子结合亲和力的计算顺序为 H2PO4->AcO->F->Cl->HSO4->NO3-,与实验结果非常吻合。结合亲和力的总体顺序归因于阴离子的碱性、溶剂化效应和可用质子受体的数量。NMR 和 UV-vis 光谱的计算强烈支持受体-阴离子复合物的实验表征。还对选定的受体-阴离子复合物进行了显式溶剂分子动力学模拟。结构描述符的分析表明,在整个模拟过程中,阴离子通过氢键与五个受体质子强烈结合在结合口袋内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验