Department of Biophysics and Biocybernetics, Institute of Neurocybernetics, Southern Federal University, 194/1 Stachky Ave., NII NK, Rostov-on-Don, 344090, Russia.
J Mol Neurosci. 2013 Mar;49(3):480-90. doi: 10.1007/s12031-012-9858-6. Epub 2012 Jul 31.
Neurons and glial cells can protect each other from stress and following death by mutual exchange with neurotrophins. In order to examine involvement of different neurotrophic factors in neuroglial interactions in a photosensitized crayfish stretch receptor, a simple model object consisting of only two sensory neurons enveloped by glial cells, we studied the influence of glial cell line-derived neurotrophic factor (GDNF), neurturin, and ciliary neurotrophic factor (CNTF) on its photodynamic injury. Photodynamic treatment, which causes strong oxidative stress, induced firing abolition and necrosis of neurons, necrosis, and apoptosis of glial cells. GDNF significantly reduced photoinduced neuronal necrosis and neurturin but not CNTF showed a similar tendency. Both of them significantly reduced necrosis and apoptosis of glial cells. At the ultrastructural level, neurons and glial cells treated with GDNF in the darkness contained large mitochondria with well-developed cristae, numerous ribosomes, polysomes, rough endoplasmic reticulum (ER), and dictyosomes. This indicated the high level of bioenergetic, biosynthetic, and transport processes. Photodynamic treatment caused swelling and vacuolization of mitochondria, dictyosomes, and ER. It also impaired formation of glial protrusions and double membrane vesicles that transfer glial material into the neuron. GDNF prevented photoinduced mitochondria swelling that disturbed the cellular bioenergetics and cytoplasm vacuolization associated with injury of intracellular organelles. It also preserved the structures involved in protein synthesis and transport: rough ER, dictyosomes, polysomes, microtubule bundles, submembrane cisterns, and double membrane vesicles. GDNF-mediated maintenance of metabolism and ultrastructure of photosensitized neurons and glial cells may be the basis of its neuro- and glia protective effects.
神经元和神经胶质细胞可以通过神经营养因子的相互交换来保护彼此免受应激和随后的死亡。为了研究不同神经营养因子在感光螯虾伸展感受器的神经胶质相互作用中的作用,我们使用了一个简单的模型,该模型仅由两个被神经胶质细胞包裹的感觉神经元组成,研究了胶质细胞衍生的神经营养因子(GDNF)、neurturin 和睫状神经营养因子(CNTF)对其光动力损伤的影响。光动力处理会引起强烈的氧化应激,导致神经元的放电停止和坏死,以及神经胶质细胞的坏死和凋亡。GDNF 显著降低了光诱导的神经元坏死,neurturin 也表现出类似的趋势,但 CNTF 没有表现出这种趋势。它们都显著降低了神经胶质细胞的坏死和凋亡。在超微结构水平上,用 GDNF 处理的神经元和神经胶质细胞在黑暗中含有大的线粒体,嵴发育良好,核糖体、多核糖体、粗面内质网(ER)和高尔基复合体丰富。这表明生物能量学、生物合成和运输过程的水平很高。光动力处理导致线粒体、高尔基复合体和 ER 肿胀和空泡化。它还损害了神经胶质突起和双层膜小泡的形成,这些小泡将神经胶质物质转移到神经元中。GDNF 防止了光诱导的线粒体肿胀,这种肿胀扰乱了细胞的生物能量学,并与细胞内细胞器损伤相关的细胞质空泡化。它还保存了参与蛋白质合成和运输的结构:粗面内质网、高尔基复合体、多核糖体、微管束、亚膜池和双层膜小泡。GDNF 介导的光致敏神经元和神经胶质细胞的代谢和超微结构的维持可能是其神经和神经胶质保护作用的基础。