Suppr超能文献

热休克蛋白 90 构象转变的分子和热力学研究

Molecular and thermodynamic insights into the conformational transitions of Hsp90.

机构信息

Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.

出版信息

Biophys J. 2012 Jul 18;103(2):284-92. doi: 10.1016/j.bpj.2012.06.018. Epub 2012 Jul 17.

Abstract

Hsp90, the most abundant cellular protein, has been implicated in numerous physiological and pathological processes. It controls protein folding and prevents aggregation, but it also plays a role in cancer and neurological disorders, making it an attractive drug target. Experimental efforts have demonstrated its remarkable structural flexibility and conformational complexity, which enable it to accommodate a variety of clients, but have not been able to provide a detailed molecular description of the conformational transitions. In our molecular dynamics simulations, Hsp90 underwent dramatic structural rearrangements into energetically favorable stretched and compact states. The transitions were guided by key electrostatic interactions between specific residues of opposite subunits. Nucleotide-bound structures showed the same conformational flexibility, although ADP and ATP seemed to potentiate these interactions by stabilizing two different closed conformations. Our observations may explain the difference in dynamic behavior observed among Hsp90 homologs, and the atomic resolution of the conformational transitions helps elucidate the complex chaperone machinery.

摘要

热休克蛋白 90(Hsp90)是细胞内含量最丰富的蛋白质,它参与了许多生理和病理过程。它控制着蛋白质的折叠和防止聚集,但它也在癌症和神经紊乱中发挥作用,因此成为一个有吸引力的药物靶点。实验研究已经证明了它具有显著的结构灵活性和构象复杂性,使其能够容纳各种客户,但无法提供构象转变的详细分子描述。在我们的分子动力学模拟中,Hsp90 经历了剧烈的结构重排,形成了能量有利的伸展和紧凑状态。这些转变是由相反亚基的特定残基之间的关键静电相互作用引导的。与核苷酸结合的结构显示出相同的构象灵活性,尽管 ADP 和 ATP 通过稳定两种不同的封闭构象似乎增强了这些相互作用。我们的观察结果可以解释 Hsp90 同源物之间观察到的动态行为差异,构象转变的原子分辨率有助于阐明复杂的伴侣机制。

相似文献

1
Molecular and thermodynamic insights into the conformational transitions of Hsp90.
Biophys J. 2012 Jul 18;103(2):284-92. doi: 10.1016/j.bpj.2012.06.018. Epub 2012 Jul 17.
2
Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle.
Mol Cell. 2008 Dec 5;32(5):631-40. doi: 10.1016/j.molcel.2008.10.024.
4
Conformational dynamics of the molecular chaperone Hsp90.
Q Rev Biophys. 2011 May;44(2):229-55. doi: 10.1017/S0033583510000314. Epub 2011 Mar 18.
5
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):395-404. doi: 10.1073/pnas.1916030116. Epub 2019 Dec 20.
6
A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain.
Sci Rep. 2015 Apr 13;5:9542. doi: 10.1038/srep09542.
7
Thermodynamic analysis of interactions of the Hsp90 with adenosine nucleotides: A comparative perspective.
Int J Biol Macromol. 2019 Jun 1;130:125-138. doi: 10.1016/j.ijbiomac.2019.02.116. Epub 2019 Feb 20.
8
Conformational Cycling within the Closed State of Grp94, an Hsp90-Family Chaperone.
J Mol Biol. 2019 Aug 9;431(17):3312-3323. doi: 10.1016/j.jmb.2019.06.004. Epub 2019 Jun 14.
10
Allosteric Modulation of Human Hsp90α Conformational Dynamics.
J Chem Inf Model. 2018 Feb 26;58(2):383-404. doi: 10.1021/acs.jcim.7b00630. Epub 2018 Feb 12.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Corresponding functional dynamics across the Hsp90 Chaperone family: insights from a multiscale analysis of MD simulations.
PLoS Comput Biol. 2012;8(3):e1002433. doi: 10.1371/journal.pcbi.1002433. Epub 2012 Mar 22.
3
Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2937-42. doi: 10.1073/pnas.1114414109. Epub 2012 Feb 6.
4
Heat shock protein 90's mechanochemical cycle is dominated by thermal fluctuations.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):161-6. doi: 10.1073/pnas.1107930108. Epub 2011 Dec 19.
5
Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
J Mol Biol. 2012 Jan 6;415(1):3-15. doi: 10.1016/j.jmb.2011.10.038. Epub 2011 Oct 31.
6
Molecular chaperones in protein folding and proteostasis.
Nature. 2011 Jul 20;475(7356):324-32. doi: 10.1038/nature10317.
8
Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone.
Mol Cell. 2011 Apr 8;42(1):96-105. doi: 10.1016/j.molcel.2011.01.029.
9
Conformational dynamics of the molecular chaperone Hsp90.
Q Rev Biophys. 2011 May;44(2):229-55. doi: 10.1017/S0033583510000314. Epub 2011 Mar 18.
10
HSP90 modulates actin dynamics: inhibition of HSP90 leads to decreased cell motility and impairs invasion.
Biochim Biophys Acta. 2011 Jan;1813(1):213-21. doi: 10.1016/j.bbamcr.2010.09.012. Epub 2010 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验