Max-Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
Department of Theoretical and Computational Biophysics, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems. Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines. The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions. Not only does this combination of algorithms enable extremely long simulations of large systems but also it provides that simulation performance on quite modest numbers of standard cluster nodes.
分子模拟是研究化学和生物分子系统的一种极其有用但计算成本非常高的工具。在这里,我们展示了我们的分子模拟工具包 GROMACS 的一个新实现,它现在通过算法优化和手工编写的例程在单处理器上实现了极高的性能,同时在并行机器上也具有很好的扩展性。该代码包含一个最小通信域分解算法、完全动态负载平衡、最先进的并行约束求解器以及高效的虚拟站点算法,这些算法允许去除氢原子自由度,从而能够在并行计算中实现高达 5 fs 的原子模拟积分步长。为了提高常见的粒子网格 Ewald 静电算法的可扩展性,我们还使用了一种多程序、多数据方法,其中单独的节点域负责直接和倒易空间的相互作用。这种算法的组合不仅使大型系统的极其长的模拟成为可能,而且还能够在相当数量的标准集群节点上提供模拟性能。