Suppr超能文献

一个 microRNA 网络调控野生型和 DeltaF508 突变型囊性纤维化跨膜电导调节子的表达和生物合成。

A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator.

机构信息

Department of Pediatrics, Interdisciplinary Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13362-7. doi: 10.1073/pnas.1210906109. Epub 2012 Aug 1.

Abstract

Production of functional proteins requires multiple steps, including gene transcription and posttranslational processing. MicroRNAs (miRNAs) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that miRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with an miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl(-) permeability independent of elevated mRNA levels. An miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, protein degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl(-) transport to cystic fibrosis airway epithelia. This miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process more broadly than recognized previously. This discovery also provides therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.

摘要

生产功能性蛋白质需要多个步骤,包括基因转录和翻译后加工。microRNAs(miRNAs)可以调节这些过程的各个阶段。尽管囊性纤维化跨膜电导调节因子(CFTR)通道对上皮阴离子转运很重要,但它的表达如何调节仍不确定。我们发现 miRNA-138 通过与转录调节蛋白 SIN3A 的相互作用来调节 CFTR 的表达。用 miR-138 模拟物处理气道上皮细胞可增加 CFTR mRNA 的表达,并且独立于 mRNA 水平的升高增强 CFTR 的丰度和跨上皮 Cl(-)通透性。miR-138 反义 miRNA 则具有相反的效果。重要的是,miR-138 改变了与 CFTR 相关的许多编码蛋白的基因表达,并可能影响其生物合成。最常见的 CFTR 突变,ΔF508,导致蛋白质错误折叠、蛋白质降解和囊性纤维化。值得注意的是,操纵 miR-138 调节网络也改善了 CFTR-ΔF508 的生物合成,并恢复了囊性纤维化气道上皮细胞的 Cl(-)转运。这个 miRNA 调节网络将基因表达从染色体导向细胞膜,表明单个 miRNA 可以比以前认识到的更广泛地控制细胞过程。这一发现还为恢复受最常见囊性纤维化突变影响的细胞的 CFTR 功能提供了治疗途径。

相似文献

1
A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13362-7. doi: 10.1073/pnas.1210906109. Epub 2012 Aug 1.
5
A domain mimic increases DeltaF508 CFTR trafficking and restores cAMP-stimulated anion secretion in cystic fibrosis epithelia.
Am J Physiol Cell Physiol. 2004 Jul;287(1):C192-9. doi: 10.1152/ajpcell.00337.2003. Epub 2004 Mar 17.
8
Comparative processing and function of human and ferret cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2012 Jun 22;287(26):21673-85. doi: 10.1074/jbc.M111.336537. Epub 2012 May 8.
9
SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis.
Am J Respir Cell Mol Biol. 2006 Mar;34(3):355-63. doi: 10.1165/rcmb.2005-0286OC. Epub 2005 Nov 11.

引用本文的文献

1
miRNA-target gene network analysis in siblings with cystic fibrosis and phenotypic variability.
Turk J Med Sci. 2025 Apr 28;55(4):1014-1023. doi: 10.55730/1300-0144.6054. eCollection 2025.
2
Perspectives in MicroRNA Therapeutics for Cystic Fibrosis.
Noncoding RNA. 2025 Jan 12;11(1):3. doi: 10.3390/ncrna11010003.
4
Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets.
Funct Integr Genomics. 2023 Jan 10;23(1):33. doi: 10.1007/s10142-022-00947-4.
5
CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium.
EMBO Rep. 2023 Feb 6;24(2):e54261. doi: 10.15252/embr.202154261. Epub 2022 Dec 22.
8
The Novel Regulatory Role of the lncRNA-miRNA-mRNA Axis in Chronic Inflammatory Airway Diseases.
Front Mol Biosci. 2022 Jun 13;9:927549. doi: 10.3389/fmolb.2022.927549. eCollection 2022.
9
The role of microRNAs in COVID-19 with a focus on miR-200c.
J Circ Biomark. 2022 Mar 21;11:14-23. doi: 10.33393/jcb.2022.2356. eCollection 2022 Jan-Dec.
10
Suppression of SIN3A by miR-183 Promotes Breast Cancer Metastasis.
Mol Cancer Res. 2022 Jun 3;20(6):883-894. doi: 10.1158/1541-7786.MCR-21-0508.

本文引用的文献

2
Nucleosome occupancy reveals regulatory elements of the CFTR promoter.
Nucleic Acids Res. 2012 Jan;40(2):625-37. doi: 10.1093/nar/gkr754. Epub 2011 Sep 24.
3
Molecular mechanisms controlling CFTR gene expression in the airway.
J Cell Mol Med. 2012 Jun;16(6):1321-30. doi: 10.1111/j.1582-4934.2011.01439.x.
4
Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.
Nat Cell Biol. 2011 Jun;13(6):693-9. doi: 10.1038/ncb2241. Epub 2011 May 22.
5
Microarray mRNA expression profiling to study cystic fibrosis.
Methods Mol Biol. 2011;742:193-212. doi: 10.1007/978-1-61779-120-8_12.
6
Current prospects for RNA interference-based therapies.
Nat Rev Genet. 2011 May;12(5):329-40. doi: 10.1038/nrg2968.
7
The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs.
Sci Transl Med. 2011 Mar 16;3(74):74ra24. doi: 10.1126/scitranslmed.3001868.
8
The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice.
J Clin Invest. 2011 Apr;121(4):1373-85. doi: 10.1172/JCI42579. Epub 2011 Mar 14.
9
MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3713-8. doi: 10.1073/pnas.1100048108. Epub 2011 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验