Department for Physiology of Cognitive Processes and ‡High-Field MR Center, Max-Planck Institute for Biological Cybernetics,Spemannstrasse 38, 72076 T€ubingen, Germany.
ACS Chem Neurosci. 2011 Oct 19;2(10):578-87. doi: 10.1021/cn200022m. Epub 2011 Aug 3.
To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels.
为了非侵入性地和动态地研究脑网络的连通性,我们开发了一种将神经元示踪剂功能化的新策略,并设计了一种生物相容性探针,可通过磁共振成像(MRI)在体内可视化。此外,所采用的多模态设计允许使用传统的组织化学技术进行结合的离体研究和具有微观空间分辨率的研究。我们提供了关于生物胞素(一种众所周知的神经元示踪剂)功能化的数据,并通过显示活老鼠在 MRI 下的皮质连接脑网络以及相应的微观细节(如在光镜下的纤维和神经元形态),证明了该方法的有效性。我们进一步证明,所开发的分子是第一个可优先追踪逆行连接的 MRI 可见探针。我们的研究为开发在神经科学中广泛感兴趣的多模态分子成像工具提供了一个新平台,该平台可在体内捕获大规模神经网络的动态及其微观特征,从而跨越多个组织水平。