Suppr超能文献

线性组合生物标志物以提高具有三个有序诊断类别的诊断准确性。

Linear combinations of biomarkers to improve diagnostic accuracy with three ordinal diagnostic categories.

机构信息

Department of Biostatistics, State University of New York at Buffalo, 706 Kimball Tower, 3435 Main Street, Buffalo, NY 14214, U.S.A.

出版信息

Stat Med. 2013 Feb 20;32(4):631-43. doi: 10.1002/sim.5542. Epub 2012 Aug 3.

Abstract

Many researchers have addressed the problem of finding the optimal linear combination of biomarkers to maximize the area under receiver operating characteristic (ROC) curves for scenarios with binary disease status. In practice, many disease processes such as Alzheimer can be naturally classified into three diagnostic categories such as normal, mild cognitive impairment and Alzheimer's disease (AD), and for such diseases the volume under the ROC surface (VUS) is the most commonly used index of diagnostic accuracy. In this article, we propose a few parametric and nonparametric approaches to address the problem of finding the optimal linear combination to maximize the VUS. We carried out simulation studies to investigate the performance of the proposed methods. We apply all of the investigated approaches to a real data set from a cohort study in early stage AD.

摘要

许多研究人员已经解决了这个问题,即找到最优的线性组合生物标志物,以最大化用于二元疾病状态情况下的接收器操作特性 (ROC) 曲线下面积。在实践中,许多疾病过程,如阿尔茨海默病,可以自然地分为三个诊断类别,如正常、轻度认知障碍和阿尔茨海默病 (AD),对于这类疾病,ROC 曲线下面积 (VUS) 是最常用的诊断准确性指标。在本文中,我们提出了一些参数和非参数方法来解决寻找最优线性组合以最大化 VUS 的问题。我们进行了模拟研究来评估所提出方法的性能。我们将所有研究的方法应用于来自早期 AD 队列研究的真实数据集。

相似文献

1
Linear combinations of biomarkers to improve diagnostic accuracy with three ordinal diagnostic categories.
Stat Med. 2013 Feb 20;32(4):631-43. doi: 10.1002/sim.5542. Epub 2012 Aug 3.
2
Optimal linear combination of biomarkers for multi-category diagnosis.
Stat Med. 2016 Jan 30;35(2):202-13. doi: 10.1002/sim.6622. Epub 2015 Aug 6.
3
Confidence interval estimation of the difference between two sensitivities to the early disease stage.
Biom J. 2014 Mar;56(2):270-86. doi: 10.1002/bimj.201200012. Epub 2013 Nov 22.
5
Diagnostic thresholds with three ordinal groups.
J Biopharm Stat. 2014;24(3):608-33. doi: 10.1080/10543406.2014.888437.
7
Predictive inference for best linear combination of biomarkers subject to limits of detection.
Stat Med. 2017 Aug 15;36(18):2844-2874. doi: 10.1002/sim.7317. Epub 2017 May 28.
8
Estimation of the volume under the receiver-operating characteristic surface adjusting for non-ignorable verification bias.
Stat Methods Med Res. 2018 Mar;27(3):715-739. doi: 10.1177/0962280217742541. Epub 2018 Jan 17.
9
Linear combination methods to improve diagnostic/prognostic accuracy on future observations.
Stat Methods Med Res. 2016 Aug;25(4):1359-80. doi: 10.1177/0962280213481053. Epub 2013 Apr 16.
10
A new diagnostic accuracy measure and cut-point selection criterion.
Stat Methods Med Res. 2017 Dec;26(6):2832-2852. doi: 10.1177/0962280215611631. Epub 2015 Oct 20.

引用本文的文献

2
Estimating the optimal linear combination of predictors using spherically constrained optimization.
BMC Bioinformatics. 2022 Oct 19;23(Suppl 3):436. doi: 10.1186/s12859-022-04953-y.
3
Semiparametric isotonic regression analysis for risk assessment under nested case-control and case-cohort designs.
Stat Methods Med Res. 2020 Aug;29(8):2328-2343. doi: 10.1177/0962280219893389. Epub 2019 Dec 22.
4
Combining multiple biomarkers linearly to maximize the partial area under the ROC curve.
Stat Med. 2018 Feb 20;37(4):627-642. doi: 10.1002/sim.7535. Epub 2017 Oct 30.
5
Exact p-values for Simon's two-stage designs in clinical trials.
Stat Biosci. 2016;8(2):351-357. doi: 10.1007/s12561-016-9152-1. Epub 2016 Jun 16.
7
Combining large number of weak biomarkers based on AUC.
Stat Med. 2015 Dec 20;34(29):3811-30. doi: 10.1002/sim.6600. Epub 2015 Jul 30.
8
Diagnostic thresholds with three ordinal groups.
J Biopharm Stat. 2014;24(3):608-33. doi: 10.1080/10543406.2014.888437.
9
Linear combination methods to improve diagnostic/prognostic accuracy on future observations.
Stat Methods Med Res. 2016 Aug;25(4):1359-80. doi: 10.1177/0962280213481053. Epub 2013 Apr 16.

本文引用的文献

1
A min-max combination of biomarkers to improve diagnostic accuracy.
Stat Med. 2011 Jul 20;30(16):2005-14. doi: 10.1002/sim.4238. Epub 2011 Apr 7.
2
The Optimal Linear Combination of Multiple Predictors Under the Generalized Linear Models.
Stat Probab Lett. 2009 Nov 15;79(22):2321-2327. doi: 10.1016/j.spl.2009.08.002.
3
Item response theory facilitated cocalibrating cognitive tests and reduced bias in estimated rates of decline.
J Clin Epidemiol. 2008 Oct;61(10):1018-27.e9. doi: 10.1016/j.jclinepi.2007.11.011. Epub 2008 May 5.
4
The meaning and use of the volume under a three-class ROC surface (VUS).
IEEE Trans Med Imaging. 2008 May;27(5):577-88. doi: 10.1109/TMI.2007.908687.
5
A parametric comparison of diagnostic accuracy with three ordinal diagnostic groups.
Biom J. 2007 Aug;49(5):682-93. doi: 10.1002/bimj.200610359.
7
Combining biomarkers to detect disease with application to prostate cancer.
Biostatistics. 2003 Oct;4(4):523-38. doi: 10.1093/biostatistics/4.4.523.
8
Combining diagnostic test results to increase accuracy.
Biostatistics. 2000 Jun;1(2):123-40. doi: 10.1093/biostatistics/1.2.123.
9
Emerging molecular markers of cancer.
Nat Rev Cancer. 2002 Mar;2(3):210-9. doi: 10.1038/nrc755.
10
The Clinical Dementia Rating (CDR): current version and scoring rules.
Neurology. 1993 Nov;43(11):2412-4. doi: 10.1212/wnl.43.11.2412-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验