Suppr超能文献

具有三个有序组别的诊断阈值。

Diagnostic thresholds with three ordinal groups.

作者信息

Attwood Kristopher, Tian Lili, Xiong Chengjie

机构信息

a Department of Biostatistics , University at Buffalo , Buffalo , New York , USA.

出版信息

J Biopharm Stat. 2014;24(3):608-33. doi: 10.1080/10543406.2014.888437.

Abstract

In practice, there exist many disease processes with three ordinal disease classes; for example, in the detection of Alzheimer's disease (AD) a patient can be classified as healthy (disease-free stage), mild cognitive impairment (early disease stage), or AD (full disease stage). The treatment interventions and effectiveness of such disease processes will depend on the disease stage. Therefore, it is important to develop diagnostic tests with the ability to discriminate between the three disease stages. Measuring the overall ability of diagnostic tests to discriminate between the three classes has been discussed extensively in the literature. However, there has been little proposed on how to select clinically meaningful thresholds for such diagnostic tests, except for a method based on the generalized Youden index by Nakas et al. (2010). In this article, we propose two new criteria for selecting diagnostic thresholds in the three-class setting. The numerical study demonstrated that the proposed methods may provide thresholds with less variability and more balance among the correct classification rates for the three stages. The proposed methods are applied to two real examples: the clinical diagnosis of AD from the Washington University Alzheimer's Disease Research Center and the detection of liver cancer (LC) using protein segments.

摘要

在实际应用中,存在许多具有三个有序疾病类别的疾病过程;例如,在阿尔茨海默病(AD)的检测中,患者可被分类为健康(无病阶段)、轻度认知障碍(疾病早期阶段)或AD(疾病完全阶段)。此类疾病过程的治疗干预措施和效果将取决于疾病阶段。因此,开发能够区分这三个疾病阶段的诊断测试非常重要。测量诊断测试区分这三个类别的总体能力在文献中已有广泛讨论。然而,除了Nakas等人(2010年)基于广义约登指数的方法外,关于如何为此类诊断测试选择具有临床意义的阈值的提议很少。在本文中,我们提出了两个在三类设置中选择诊断阈值的新标准。数值研究表明,所提出的方法可能会提供变异性较小且三个阶段正确分类率之间更平衡的阈值。所提出的方法应用于两个实际例子:来自华盛顿大学阿尔茨海默病研究中心的AD临床诊断以及使用蛋白质片段检测肝癌(LC)。

相似文献

1
Diagnostic thresholds with three ordinal groups.
J Biopharm Stat. 2014;24(3):608-33. doi: 10.1080/10543406.2014.888437.
2
Linear combinations of biomarkers to improve diagnostic accuracy with three ordinal diagnostic categories.
Stat Med. 2013 Feb 20;32(4):631-43. doi: 10.1002/sim.5542. Epub 2012 Aug 3.
5
A new diagnostic accuracy measure and cut-point selection criterion.
Stat Methods Med Res. 2017 Dec;26(6):2832-2852. doi: 10.1177/0962280215611631. Epub 2015 Oct 20.
6
Statistical Methodology for Multiclass Classifications: Applications to Dementia.
J Alzheimers Dis. 2019;68(1):173-186. doi: 10.3233/JAD-180580.
8
Confidence interval estimation of the difference between two sensitivities to the early disease stage.
Biom J. 2014 Mar;56(2):270-86. doi: 10.1002/bimj.201200012. Epub 2013 Nov 22.
10
Inverse probability weighting estimation of the volume under the ROC surface in the presence of verification bias.
Biom J. 2016 Nov;58(6):1338-1356. doi: 10.1002/bimj.201500225. Epub 2016 Jun 24.

引用本文的文献

2
On diagnostic accuracy measure with cut-points criterion for ordinal disease classification based on concordance and discordance.
J Appl Stat. 2022 Feb 21;50(8):1772-1789. doi: 10.1080/02664763.2022.2041567. eCollection 2023.
7
Biomarkers for diagnosis of childhood tuberculosis: A systematic review.
PLoS One. 2018 Sep 13;13(9):e0204029. doi: 10.1371/journal.pone.0204029. eCollection 2018.

本文引用的文献

1
Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point.
Comput Stat Data Anal. 2012 May 1;56(5):1103-1114. doi: 10.1016/j.csda.2010.11.023. Epub 2010 Dec 7.
2
Exact confidence interval estimation for the difference in diagnostic accuracy with three ordinal diagnostic groups.
J Stat Plan Inference. 2011 Jan 1;141(1):549-558. doi: 10.1016/j.jspi.2010.07.004. Epub 2010 Jul 20.
3
Linear combinations of biomarkers to improve diagnostic accuracy with three ordinal diagnostic categories.
Stat Med. 2013 Feb 20;32(4):631-43. doi: 10.1002/sim.5542. Epub 2012 Aug 3.
5
Optimum threshold estimation based on cost function in a multistate diagnostic setting.
Stat Med. 2012 May 20;31(11-12):1098-109. doi: 10.1002/sim.4369. Epub 2011 Sep 21.
7
Indexes for three-class classification performance assessment--an empirical comparison.
IEEE Trans Inf Technol Biomed. 2009 May;13(3):300-12. doi: 10.1109/TITB.2008.2009440. Epub 2009 Jan 20.
8
A comparison of tests for restricted orderings in the three-class case.
Stat Med. 2009 Mar 30;28(7):1144-58. doi: 10.1002/sim.3536.
9
The meaning and use of the volume under a three-class ROC surface (VUS).
IEEE Trans Med Imaging. 2008 May;27(5):577-88. doi: 10.1109/TMI.2007.908687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验