Suppr超能文献

自我中心交流网络中的关联动态。

Correlated dynamics in egocentric communication networks.

机构信息

BECS, Aalto University School of Science, Espoo, Finland.

出版信息

PLoS One. 2012;7(7):e40612. doi: 10.1371/journal.pone.0040612. Epub 2012 Jul 12.

Abstract

We investigate the communication sequences of millions of people through two different channels and analyse the fine grained temporal structure of correlated event trains induced by single individuals. By focusing on correlations between the heterogeneous dynamics and the topology of egocentric networks we find that the bursty trains usually evolve for pairs of individuals rather than for the ego and his/her several neighbours, thus burstiness is a property of the links rather than of the nodes. We compare the directional balance of calls and short messages within bursty trains to the average on the actual link and show that for the trains of voice calls the imbalance is significantly enhanced, while for short messages the balance within the trains increases. These effects can be partly traced back to the technological constraints (for short messages) and partly to the human behavioural features (voice calls). We define a model that is able to reproduce the empirical results and may help us to understand better the mechanisms driving technology mediated human communication dynamics.

摘要

我们通过两种不同的渠道研究了数百万人的交流序列,并分析了由单个个体引起的相关事件序列的精细时间结构。通过关注异质动态与自我中心网络拓扑之间的相关性,我们发现突发序列通常是针对个体对而不是自我及其几个邻居的,因此突发是链路的特性而不是节点的特性。我们将突发序列中的呼叫和短消息的定向平衡与实际链路的平均值进行比较,并表明对于语音呼叫的突发序列,不平衡性显著增强,而对于短消息,突发序列中的平衡度增加。这些影响部分可以追溯到技术限制(对于短消息),部分可以追溯到人类行为特征(语音呼叫)。我们定义了一个能够再现经验结果的模型,这可能有助于我们更好地理解驱动技术介导的人类通信动态的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85bd/3395632/812e52c65b33/pone.0040612.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验