Department of Nano Fusion Technology, College of Nanoscience and Nanotechnology, Pusan National University, Miryang, 627-706, Korea.
Nanoscale Res Lett. 2012 Aug 7;7(1):438. doi: 10.1186/1556-276X-7-438.
Noble metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon-induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS-capped CdSe QDs were spin-coated on poly-(methyl methacrylate)-covered Ag films, which brought QDs near the metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS QDs due to the strong coupling of emitter wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high-efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high-contrast imaging.
贵金属纳米结构可调节光学和电学性能,在实际应用中具有很高的实用性。我们研究了在工程金属纳米结构上半导体量子点(QD)的表面等离激元诱导发射。高稳定性的有机 ZnS 包裹的 CdSe QD 通过旋涂的方式被覆盖在聚甲基丙烯酸甲酯(PMMA)的 Ag 薄膜上,使 QD 靠近金属表面。由于发射子波函数与 Ag 等离子体共振的强烈耦合,我们从 CdSe/ZnS QD 中获得了增强的电磁场和减少的荧光寿命。观察到的变化包括与光滑表面相比,粗糙 Ag 纳米针上 CdSe/ZnS QD 的荧光强度增加了六倍,荧光寿命显著降低。这些纳米复合材料的优点有望用于高效发光二极管、生物和环境监测的平台制造以及高对比度成像。