Suppr超能文献

四氢生物蝶呤耐药通道与脂筏的关联调节感觉神经元兴奋性。

Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.

机构信息

Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.

出版信息

PLoS One. 2012;7(8):e40079. doi: 10.1371/journal.pone.0040079. Epub 2012 Aug 1.

Abstract

Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. Na(V)1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V)1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V)1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V)1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V)1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V)1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and Na(V)1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V)1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V)1.8 in nociceptors and highlight the importance of the association between Na(V)1.8 and lipid rafts in the control of nociceptor excitability.

摘要

电压门控钠离子通道(VGSCs)在神经元动作电位的产生和传播中起着关键作用。Na(V)1.8 是一种河豚毒素(TTX)抗性 VGSC,在伤害感受器中表达,伤害感受器是能够检测到有害刺激的外周小直径神经元。Na(V)1.8 是动作电位期间绝大多数钠离子电流的基础。许多研究强调了 Na(V)1.8 在炎症和慢性疼痛模型中的关键作用。脂筏是富含胆固醇和鞘脂的质膜的微区。脂筏调节质膜上蛋白质和脂质的空间和时间组织。它们被认为是质膜上的平台,蛋白质和脂质可以在那里运输、分隔和功能聚类。在本研究中,我们研究了 Na(V)1.8 的亚细胞定位,并探讨了它与伤害感受器中脂筏相关的想法。我们发现 Na(V)1.8 沿 DRG 神经元的轴突在体外和体内呈簇状分布。我们还通过生化和成像研究证明,Na(V)1.8 与坐骨神经体外和 DRG 神经元体外的脂筏相关。此外,用甲基-β-环糊精(MβCD)和 7-酮胆固醇(7KC)处理导致筏和 Na(V)1.8 分离。通过钙成像,我们证明了筏和 Na(V)1.8 之间缺乏关联与神经元兴奋性受损相关,这表现为能够进行机械和化学去极化的神经元数量减少。这些发现揭示了伤害感受器中 Na(V)1.8 的亚细胞定位,并强调了 Na(V)1.8 与脂筏之间的关联在控制伤害感受器兴奋性中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2456/3411591/3f549a793c39/pone.0040079.g001.jpg

相似文献

1
Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability.
PLoS One. 2012;7(8):e40079. doi: 10.1371/journal.pone.0040079. Epub 2012 Aug 1.
3
Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons.
J Neurosci. 2019 Sep 4;39(36):7086-7101. doi: 10.1523/JNEUROSCI.2817-18.2019. Epub 2019 Jul 12.
4
Analysis of the variation in use-dependent inactivation of high-threshold tetrodotoxin-resistant sodium currents recorded from rat sensory neurons.
Neuroscience. 2006 Dec 28;143(4):923-38. doi: 10.1016/j.neuroscience.2006.08.052. Epub 2006 Oct 4.
6
Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons.
Neuroscience. 2009 Mar 17;159(2):559-69. doi: 10.1016/j.neuroscience.2008.12.029. Epub 2008 Dec 30.
7
Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat.
Pain. 2011 May;152(5):1114-1126. doi: 10.1016/j.pain.2011.01.033. Epub 2011 Feb 22.
9
Modulation of peripheral Na(+) channels and neuronal firing by n-butyl-p-aminobenzoate.
Eur J Pharmacol. 2014 Mar 15;727:158-66. doi: 10.1016/j.ejphar.2014.01.036. Epub 2014 Jan 30.

引用本文的文献

1
Humanized Na1.8 rats overcome cross-species potency shifts in developing novel Na1.8 inhibitors.
Neurobiol Pain. 2025 Mar 6;18:100182. doi: 10.1016/j.ynpai.2025.100182. eCollection 2025 Jul-Dec.
2
Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons.
Nat Commun. 2024 Nov 15;15(1):9898. doi: 10.1038/s41467-024-54053-z.
3
Analgesia and peripheral c-fiber modulation by selective Na v 1.8 inhibition in rhesus.
Pain. 2025 Mar 1;166(3):631-643. doi: 10.1097/j.pain.0000000000003404. Epub 2024 Oct 8.
4
Clustering of voltage-gated ion channels as an evolutionary trigger of myelin formation.
Neural Regen Res. 2024 Aug 1;19(8):1631-1632. doi: 10.4103/1673-5374.389636. Epub 2023 Dec 11.
5
Oxysterols in Central and Peripheral Synaptic Communication.
Adv Exp Med Biol. 2024;1440:91-123. doi: 10.1007/978-3-031-43883-7_6.
6
Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation.
Brain Stimul. 2023 Mar-Apr;16(2):484-506. doi: 10.1016/j.brs.2023.02.003. Epub 2023 Feb 10.
7
Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates?
Pharmaceutics. 2022 Nov 22;14(12):2559. doi: 10.3390/pharmaceutics14122559.
8
Multiple Targets for Oxysterols in Their Regulation of the Immune System.
Cells. 2021 Aug 13;10(8):2078. doi: 10.3390/cells10082078.
9
[Not Available].
Drug Target Insights. 2020 Dec 22;14:34-47. doi: 10.33393/dti.2020.2185. eCollection 2020.

本文引用的文献

1
Biology of cardiac sodium channel Nav1.5 expression.
Cardiovasc Res. 2012 Jan 1;93(1):12-23. doi: 10.1093/cvr/cvr252. Epub 2011 Sep 21.
2
Building excitable membranes: lipid rafts and multiple controls on trafficking of electrogenic molecules.
Neuroscientist. 2012 Feb;18(1):70-81. doi: 10.1177/1073858410393977. Epub 2011 Apr 25.
4
Revitalizing membrane rafts: new tools and insights.
Nat Rev Mol Cell Biol. 2010 Oct;11(10):688-99. doi: 10.1038/nrm2977.
5
The trafficking of Na(V)1.8.
Neurosci Lett. 2010 Dec 10;486(2):78-83. doi: 10.1016/j.neulet.2010.08.074. Epub 2010 Sep 15.
6
En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16336-41. doi: 10.1073/pnas.0914705107. Epub 2010 Aug 24.
7
Lipid microdomains and the regulation of ion channel function.
J Physiol. 2010 Sep 1;588(Pt 17):3169-78. doi: 10.1113/jphysiol.2010.191585. Epub 2010 Jun 2.
8
Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology.
Nat Protoc. 2010 Apr;5(4):714-24. doi: 10.1038/nprot.2010.15. Epub 2010 Mar 25.
9
Membrane rafting: from apical sorting to phase segregation.
FEBS Lett. 2010 May 3;584(9):1685-93. doi: 10.1016/j.febslet.2009.12.043. Epub 2009 Dec 28.
10
Cellular and molecular mechanisms of pain.
Cell. 2009 Oct 16;139(2):267-84. doi: 10.1016/j.cell.2009.09.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验