Suppr超能文献

分类回归树(CART)模型预测住院患者肺结核。

Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

机构信息

Instituto de Doenças do Tórax (IDT)/Clementino Fraga Filho Hospital (CFFH), Federal University of Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, Cidade Universitária - Ilha do Fundão, Rio de Janeiro, Brazil.

出版信息

BMC Pulm Med. 2012 Aug 7;12:40. doi: 10.1186/1471-2466-12-40.

Abstract

BACKGROUND

Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission.

METHODS

Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005.

RESULTS

We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%.

CONCLUSIONS

The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

摘要

背景

结核病(TB)仍然是全球公共卫生问题。由于缺乏特定的临床症状来诊断结核病,因此临床医生正确决定将患者收治到呼吸道隔离病房是一项艰巨的任务。对没有患病的患者进行隔离很常见,这会增加医疗成本。用于诊断医院就诊患者结核病的决策模型可以提高护理质量并降低成本,而不会增加医院传播的风险。我们提出了一种预测模型,用于预测高患病率地区住院患者的肺结核,以促进更合理地使用隔离病房,而不会增加传播风险。

方法

对 2003 年 3 月至 2004 年 12 月期间收入 CFFH 的患者进行横断面研究。生成并验证了分类和回归树(CART)模型。使用 ROC 曲线下面积(AUC)、灵敏度、特异性、阳性和阴性预测值来评估模型的性能。使用 2005 年 1 月至 12 月期间收入同一医院的不同患者样本对模型进行验证。

结果

我们研究了 290 例有临床疑似结核病的住院患者。其中 26.5%的患者被确诊。在确诊为结核病的患者中,83.7%患有肺结核(62.3%痰涂片阳性),56.9%的患者患有 HIV/AIDS。验证后的 CART 模型显示出 60.00%的灵敏度、76.16%的特异性、33.33%的阳性预测值和 90.55%的阴性预测值。AUC 为 79.70%。

结论

为这些有临床疑似结核病的住院患者开发的 CART 模型对肺结核的预测性能良好。预测结核病诊断的最重要变量是胸部 X 光结果。还需要前瞻性验证,但我们的模型为资源有限的国家的三级医疗机构中对有临床疑似结核病的患者是否进行隔离提供了决策的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc22/3511296/eef858ac6502/1471-2466-12-40-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验