Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Sci Signal. 2012 Aug 7;5(236):ra56. doi: 10.1126/scisignal.2002829.
Duchenne muscular dystrophy (DMD) is a fatal X-linked degenerative muscle disease caused by the absence of the microtubule-associated protein dystrophin, which results in a disorganized and denser microtubule cytoskeleton. In addition, mechanotransduction-dependent activation of calcium (Ca(2+)) and reactive oxygen species (ROS) signaling underpins muscle degeneration in DMD. We show that in muscle from adult mdx mice, a model of DMD, a brief physiologic stretch elicited microtubule-dependent activation of NADPH (reduced-form nicotinamide adenine dinucleotide phosphate) oxidase-dependent production of ROS, termed X-ROS. Further, X-ROS amplified Ca(2+) influx through stretch-activated channels in mdx muscle. Consistent with the importance of the microtubules to the dysfunction in mdx muscle, muscle cells with dense microtubule structure, such as those from adult mdx mice or from young wild-type mice treated with Taxol, showed increased X-ROS production and Ca(2+) influx, whereas cells with a less dense microtubule network, such as young mdx or adult mdx muscle treated with colchicine or nocodazole, showed little ROS production or Ca(2+) influx. In vivo treatments that disrupted the microtubule network or inhibited NADPH oxidase 2 reduced contraction-induced injury in adult mdx mice. Furthermore, transcriptome analysis identified increased expression of X-ROS-related genes in human DMD skeletal muscle. Together, these data show that microtubules are the proximate element responsible for the dysfunction in Ca(2+) and ROS signaling in DMD and could be effective therapeutic targets for intervention.
杜氏肌营养不良症(DMD)是一种致命的 X 连锁退行性肌肉疾病,由微管相关蛋白肌营养不良蛋白的缺失引起,导致微管细胞骨架紊乱和密度增加。此外,机械转导依赖性的钙(Ca(2+))和活性氧(ROS)信号的激活是 DMD 肌肉退化的基础。我们表明,在成年 mdx 小鼠的肌肉中,一种 DMD 模型,短暂的生理拉伸引起 NADPH(还原型烟酰胺腺嘌呤二核苷酸磷酸)氧化酶依赖的 ROS 产生的微管依赖性激活,称为 X-ROS。此外,X-ROS 通过拉伸激活通道放大 mdx 肌肉中的 Ca(2+)内流。与微管对 mdx 肌肉功能障碍的重要性一致,微管结构密集的肌肉细胞,如成年 mdx 小鼠或用紫杉醇处理的年轻野生型小鼠的肌肉细胞,显示出增加的 X-ROS 产生和 Ca(2+)内流,而微管网络密度较低的细胞,如用秋水仙碱或诺考达唑处理的年轻 mdx 或成年 mdx 肌肉,显示出很少的 ROS 产生或 Ca(2+)内流。体内治疗方法破坏微管网络或抑制 NADPH 氧化酶 2 可减少成年 mdx 小鼠的收缩诱导损伤。此外,转录组分析鉴定出人 DMD 骨骼肌中 X-ROS 相关基因的表达增加。总之,这些数据表明微管是导致 DMD 中 Ca(2+)和 ROS 信号转导功能障碍的直接因素,可能是有效的治疗靶点。