Suppr超能文献

在热应激下出汗会导致随后下体负压耐受力降低。

Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance.

机构信息

Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX 75231, USA.

出版信息

Exp Physiol. 2013 Feb;98(2):473-80. doi: 10.1113/expphysiol.2012.068171. Epub 2012 Aug 7.

Abstract

The contribution of sweating to heat stress-induced reductions in haemorrhagic tolerance is not known. This study tested the hypothesis that fluid loss due to sweating contributes to reductions in simulated haemorrhagic tolerance in conditions of heat stress. Eight subjects (35 ± 8 years old; 77 ± 5 kg) underwent a normothermic time control and two heat stress trials (randomized). The two heat stress trials were as follows: (i) with slow intravenous infusion of lactated Ringer solution sufficient to offset sweat loss (IV trial); or (ii) without intravenous infusion (dehydration; DEH trial). Haemorrhage was simulated via progressive lower-body negative pressure (LBNP) to presyncope after core body (intestinal) temperature was raised by 1.5 °C using a water-perfused suit or a normothermic time control period. The LBNP tolerance was quantified via a cumulative stress index. Middle cerebral artery blood velocity (transcranial Doppler) and mean blood pressure (Finometer®) were measured continuously. Relative changes in plasma volume were calculated from haematocrit and haemoglobin. Increases in core body temperature and sweat loss (1.6% body mass deficit) were similar (P > 0.05) between heat stress trials. Slow intravenous infusion (1.2 ± 0.3 litres) prevented heat-induced reductions in plasma volume (IV trial, -0.6 ± 6.1%; and DEH trial, -6.6 ± 5.1%; P = 0.01). Intravenous infusion improved LBNP tolerance (632 ± 64 mmHg min) by ~20% when compared with the DEH trial (407 ± 117 mmHg min; P = 0.01), yet tolerance remained 44% lower in the IV trial relative to the time control normothermic trial (1138 ± 183 mmHg min; P < 0.01). These data indicate that although sweat-induced dehydration impairs simulated haemorrhagic tolerance, this impairment is secondary to the negative impact of heat stress itself.

摘要

出汗对热应激引起的出血耐受性降低的贡献尚不清楚。本研究旨在验证以下假设:在热应激条件下,由于出汗导致的液体流失会降低模拟出血耐受性。8 名受试者(35±8 岁;77±5kg)接受了常温对照和两种热应激试验(随机)。两种热应激试验如下:(i)静脉输注乳酸林格溶液以抵消出汗损失(IV 试验);或(ii)不静脉输注(脱水;DEH 试验)。通过渐进性下体负压(LBNP)模拟出血,在核心体温(肠道)升高约 1.5°C 后使受试者接近晕厥,此时使用水灌注服或常温对照期。通过累积应激指数来量化 LBNP 耐受性。连续测量大脑中动脉血流速度(经颅多普勒)和平均血压(Finometer®)。从血细胞比容和血红蛋白计算血浆容量的相对变化。核心体温和出汗量的增加(~1.6%体重损失)在两种热应激试验之间相似(P>0.05)。缓慢静脉输注(1.2±0.3 升)可防止热诱导的血浆容量减少(IV 试验,-0.6±6.1%;和 DEH 试验,-6.6±5.1%;P=0.01)。与 DEH 试验(407±117mmHgmin)相比,静脉输注使 LBNP 耐受性提高了约 20%(632±64mmHgmin;P=0.01),但 IV 试验与常温对照期相比,耐受性仍降低了 44%(1138±183mmHgmin;P<0.01)。这些数据表明,尽管汗液引起的脱水会损害模拟出血耐受性,但这种损害是热应激本身负面影响的次要因素。

相似文献

1
Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance.
Exp Physiol. 2013 Feb;98(2):473-80. doi: 10.1113/expphysiol.2012.068171. Epub 2012 Aug 7.
2
Tolerance to a haemorrhagic challenge during heat stress is improved with inspiratory resistance breathing.
Exp Physiol. 2018 Sep;103(9):1243-1250. doi: 10.1113/EP087102. Epub 2018 Jul 23.
3
Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge.
Exp Physiol. 2017 Feb 1;102(2):255-264. doi: 10.1113/EP085896. Epub 2017 Jan 13.
4
6
Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.
Am J Physiol Regul Integr Comp Physiol. 2018 Mar 1;314(3):R415-R426. doi: 10.1152/ajpregu.00109.2017. Epub 2017 Dec 6.
7
Elevated local skin temperature impairs cutaneous vasoconstrictor responses to a simulated haemorrhagic challenge while heat stressed.
Exp Physiol. 2013 Feb;98(2):444-50. doi: 10.1113/expphysiol.2012.068353. Epub 2012 Aug 17.
8
Heat stress does not augment ventilatory responses to presyncopal limited lower body negative pressure.
Exp Physiol. 2013 Jul;98(7):1156-63. doi: 10.1113/expphysiol.2013.072082. Epub 2013 Apr 12.
9
Small reductions in skin temperature after onset of a simulated hemorrhagic challenge improve tolerance in exercise heat-stressed individuals.
Am J Physiol Regul Integr Comp Physiol. 2018 Sep 1;315(3):R539-R546. doi: 10.1152/ajpregu.00182.2018. Epub 2018 Aug 8.
10
Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men.
Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1756-61. doi: 10.1152/ajpheart.00941.2011. Epub 2012 Feb 24.

引用本文的文献

3
Acute fasting reduces tolerance to progressive central hypovolemia in humans.
J Appl Physiol (1985). 2024 Feb 1;136(2):362-371. doi: 10.1152/japplphysiol.00622.2023. Epub 2023 Dec 21.
4
Central Hypovolemia Detection During Environmental Stress-A Role for Artificial Intelligence?
Front Physiol. 2021 Dec 15;12:784413. doi: 10.3389/fphys.2021.784413. eCollection 2021.
5
Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers.
Geohealth. 2021 Aug 1;5(8):e2021GH000443. doi: 10.1029/2021GH000443. eCollection 2021 Aug.
6
Heat Adaptation in Military Personnel: Mitigating Risk, Maximizing Performance.
Front Physiol. 2019 Dec 17;10:1485. doi: 10.3389/fphys.2019.01485. eCollection 2019.
7
Impact of environmental stressors on tolerance to hemorrhage in humans.
Am J Physiol Regul Integr Comp Physiol. 2019 Feb 1;316(2):R88-R100. doi: 10.1152/ajpregu.00235.2018. Epub 2018 Dec 5.
8
Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans.
Am J Physiol Regul Integr Comp Physiol. 2019 Feb 1;316(2):R145-R156. doi: 10.1152/ajpregu.00223.2018. Epub 2018 Sep 19.
9
Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults.
J Physiol. 2017 Oct 15;595(20):6489-6498. doi: 10.1113/JP274742. Epub 2017 Sep 22.
10
Sympathetic neural and hemodynamic responses to head-up tilt during isoosmotic and hyperosmotic hypovolemia.
J Neurophysiol. 2017 Oct 1;118(4):2232-2237. doi: 10.1152/jn.00403.2017. Epub 2017 Jul 26.

本文引用的文献

1
Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men.
Am J Physiol Heart Circ Physiol. 2012 Apr 15;302(8):H1756-61. doi: 10.1152/ajpheart.00941.2011. Epub 2012 Feb 24.
2
Colloid volume loading does not mitigate decreases in central blood volume during simulated haemorrhage while heat stressed.
J Physiol. 2012 Mar 1;590(5):1287-97. doi: 10.1113/jphysiol.2011.223602. Epub 2012 Jan 4.
3
Heat-stress-induced changes in central venous pressure do not explain interindividual differences in orthostatic tolerance during heat stress.
J Appl Physiol (1985). 2011 May;110(5):1283-9. doi: 10.1152/japplphysiol.00035.2011. Epub 2011 Mar 17.
4
Decline in the rates of sweating of men working in severe heat.
Am J Physiol. 1946 Oct;147:370-8. doi: 10.1152/ajplegacy.1946.147.2.370.
5
Insufficient cutaneous vasoconstriction leading up to and during syncopal symptoms in the heat stressed human.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1168-73. doi: 10.1152/ajpheart.00290.2010. Epub 2010 Aug 6.
6
Effect of volume loading on the Frank-Starling relation during reductions in central blood volume in heat-stressed humans.
J Physiol. 2010 Sep 1;588(Pt 17):3333-9. doi: 10.1113/jphysiol.2010.191981. Epub 2010 Jul 5.
7
Skin cooling aids cerebrovascular function more effectively under severe than moderate heat stress.
Eur J Appl Physiol. 2010 May;109(1):101-8. doi: 10.1007/s00421-009-1298-9. Epub 2009 Nov 28.
8
Effect of whole body heat stress on peripheral vasoconstriction during leg dependency.
J Appl Physiol (1985). 2009 Dec;107(6):1704-9. doi: 10.1152/japplphysiol.00711.2009. Epub 2009 Oct 8.
9
Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation.
Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95. doi: 10.1152/ajpregu.91008.2008. Epub 2009 Feb 11.
10
Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans.
J Physiol. 2009 Mar 1;587(Pt 5):1131-9. doi: 10.1113/jphysiol.2008.165118. Epub 2009 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验