Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Jülich, Jülich, Germany.
J Nucl Med. 2012 Sep;53(9):1367-74. doi: 10.2967/jnumed.112.103325. Epub 2012 Aug 7.
The aim of this study was to investigate the potential of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET for differentiating local recurrent brain metastasis from radiation necrosis after radiation therapy because the use of contrast-enhanced MRI for this issue is often difficult.
Thirty-one patients (mean age ± SD, 53 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 40) on MRI after radiation therapy of brain metastases were investigated with dynamic (18)F-FET PET. Maximum and mean tumor-to-brain ratios (TBR(max) and TBR(mean), respectively; 20-40 min after injection) of (18)F-FET uptake were determined. Time-activity curves were generated, and the time to peak (TTP) was calculated. Furthermore, time-activity curves of each lesion were assigned to one of the following curve patterns: (I) constantly increasing (18)F-FET uptake, (II) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a plateau, and (III) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a constant descent. The diagnostic accuracy of the TBR(max) and TBR(mean) of (18)F-FET uptake and the curve patterns for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or Fisher exact test for 2 × 2 contingency tables using subsequent histologic analysis (11 lesions in 11 patients) or clinical course and MRI findings (29 lesions in 20 patients) as reference.
Both TBR(max) and TBR(mean) were significantly higher in patients with recurrent metastasis (n = 19) than in patients with radiation necrosis (n = 21) (TBR(max), 3.2 ± 0.9 vs. 2.3 ± 0.5, P < 0.001; TBR(mean), 2.1 ± 0.4 vs. 1.8 ± 0.2, P < 0.001). The diagnostic accuracy of (18)F-FET PET for the correct identification of recurrent brain metastases reached 78% using TBR(max) (area under the ROC curve [AUC], 0.822 ± 0.07; sensitivity, 79%; specificity, 76%; cutoff, 2.55; P = 0.001), 83% using TBR(mean) (AUC, 0.851 ± 0.07; sensitivity, 74%; specificity, 90%; cutoff, 1.95; P < 0.001), and 92% for curve patterns II and III versus curve pattern I (sensitivity, 84%; specificity, 100%; P < 0.0001). The highest accuracy (93%) to diagnose local recurrent metastasis was obtained when both a TBR(mean) greater than 1.9 and curve pattern II or III were present (AUC, 0.959 ± 0.03; sensitivity, 95%; specificity, 91%; P < 0.001).
Our findings suggest that the combined evaluation of the TBR(mean) of (18)F-FET uptake and the pattern of the time-activity curve can differentiate local brain metastasis recurrence from radionecrosis with high accuracy. (18)F-FET PET may thus contribute significantly to the management of patients with brain metastases.
本研究旨在探讨 O-(2-(18)F-氟乙基)-L-酪氨酸((18)F-FET)PET 对鉴别放疗后局部脑转移瘤复发与放射性坏死的潜在作用,因为在这个问题上使用对比增强 MRI 往往很困难。
31 例接受脑转移瘤放疗后出现单发或多发对比增强病变的患者(n=40)接受了动态(18)F-FET PET 检查。测定(18)F-FET 摄取的最大和平均肿瘤/脑比值(TBR(max)和 TBR(mean),分别为注射后 20-40 分钟)。生成时间-活性曲线,并计算达峰时间(TTP)。此外,对每个病变的时间-活性曲线分配到以下曲线模式之一:(I)持续增加的(18)F-FET 摄取,(II)早期(TTP≤20 分钟)达峰的(18)F-FET 摄取随后呈平台状,和(III)早期(TTP≤20 分钟)达峰的(18)F-FET 摄取随后呈持续下降。通过受试者工作特征分析或 Fisher 确切检验,使用随后的组织学分析(11 例患者的 11 个病变)或临床过程和 MRI 发现(20 例患者的 29 个病变)作为参考,评估(18)F-FET 摄取的 TBR(max)和 TBR(mean)以及曲线模式对正确识别复发性脑转移瘤的诊断准确性。
复发转移瘤患者(n=19)的 TBR(max)和 TBR(mean)均显著高于放射性坏死患者(n=21)(TBR(max),3.2±0.9 比 2.3±0.5,P<0.001;TBR(mean),2.1±0.4 比 1.8±0.2,P<0.001)。使用 TBR(max)时,(18)F-FET PET 对正确识别复发性脑转移瘤的诊断准确性达到 78%(ROC 曲线下面积[AUC],0.822±0.07;灵敏度,79%;特异性,76%;截断值,2.55;P=0.001),使用 TBR(mean)时达到 83%(AUC,0.851±0.07;灵敏度,74%;特异性,90%;截断值,1.95;P<0.001),而曲线模式 II 和 III 与曲线模式 I 相比,诊断准确性达到 92%(灵敏度,84%;特异性,100%;P<0.0001)。当 TBR(mean)>1.9 且曲线模式为 II 或 III 时,诊断局部复发性转移瘤的准确性最高(93%)(AUC,0.959±0.03;灵敏度,95%;特异性,91%;P<0.001)。
我们的研究结果表明,(18)F-FET 摄取的 TBR(mean)和时间-活性曲线的模式的综合评估可以非常准确地区分局部脑转移瘤复发与放射性坏死。(18)F-FET PET 可能因此对脑转移瘤患者的治疗有重要贡献。