Suppr超能文献

18F-FET PET 在疑似脑胶质瘤的新诊断脑病变中的诊断性能。

Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma.

机构信息

Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany.

出版信息

J Nucl Med. 2013 Feb;54(2):229-35. doi: 10.2967/jnumed.112.109603. Epub 2012 Dec 11.

Abstract

UNLABELLED

The aim of this study was to assess the clinical value of O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET in the initial diagnosis of cerebral lesions suggestive of glioma.

METHODS

In a retrospective study, we analyzed the clinical, radiologic, and neuropathologic data of 174 patients (77 women and 97 men; mean age, 45 ± 15 y) who had been referred for neurosurgical assessment of unclear brain lesions and had undergone (18)F-FET PET. Initial histology (n = 168, confirmed after surgery or biopsy) and the clinical course and follow-up MR imaging in 2 patients revealed 66 high-grade gliomas (HGG), 77 low-grade gliomas (LGG), 2 lymphomas, and 25 nonneoplastic lesions (NNL). In a further 4 patients, initial histology was unspecific, but during the course of the disease all patients developed an HGG. The diagnostic value of maximum and mean tumor-to-brain ratios (TBR(max/)TBR(mean)) of (18)F-FET uptake was assessed using receiver-operating-characteristic (ROC) curve analyses to differentiate between neoplastic lesions and NNL, between HGG and LGG, and between high-grade tumor (HGG or lymphoma) and LGG or NNL.

RESULTS

Neoplastic lesions showed significantly higher (18)F-FET uptake than NNL (TBR(max), 3.0 ± 1.3 vs. 1.8 ± 0.5; P < 0.001). ROC analysis yielded an optimal cutoff of 2.5 for TBR(max) to differentiate between neoplastic lesions and NNLs (sensitivity, 57%; specificity, 92%; accuracy, 62%; area under the curve [AUC], 0.76; 95% confidence interval [CI], 0.68-0.84). The positive predictive value (PPV) was 98%, and the negative predictive value (NPV) was 27%. ROC analysis for differentiation between HGG and LGG (TBR(max), 3.6 ± 1.4 vs. 2.4 ± 1.0; P < 0.001) yielded an optimal cutoff of 2.5 for TBR(max) (sensitivity, 80%; specificity, 65%; accuracy, 72%; AUC, 0.77; PPV, 66%; NPV, 79%; 95% CI, 0.68-0.84). Best differentiation between high-grade tumors (HGG or lymphoma) and both NNL and LGG was achieved with a TBR(max) cutoff of 2.5 (sensitivity, 79%; specificity, 72%; accuracy, 75%; AUC, 0.79; PPV, 65%; NPV, 84%; 95% CI, 0.71-0.86). The results for TBR(mean) were similar with a cutoff of 1.9.

CONCLUSION

(18)F-FET uptake ratios provide valuable additional information for the differentiation of cerebral lesions and the grading of gliomas. TBR(max) of (18)F-FET uptake beyond the threshold of 2.5 has a high PPV for detection of a neoplastic lesion and supports the necessity of an invasive procedure, for example, biopsy or surgical resection. Low (18)F-FET uptake (TBR(max) < 2.5) excludes a high-grade tumor with high probability.

摘要

目的

本研究旨在评估 O-(2-(18)F-氟乙基)-L-酪氨酸((18)F-FET)PET 在疑似脑胶质瘤的脑病变初始诊断中的临床价值。

方法

在一项回顾性研究中,我们分析了 174 例(77 名女性和 97 名男性;平均年龄 45 ± 15 岁)因不明原因脑病变而接受神经外科评估并接受(18)F-FET PET 的患者的临床、影像学和神经病理学数据。初始组织学(n=168,经手术或活检证实)和 2 例患者的临床过程和随访磁共振成像显示 66 例高级别胶质瘤(HGG)、77 例低级别胶质瘤(LGG)、2 例淋巴瘤和 25 例非肿瘤性病变(NNL)。在另外 4 例患者中,初始组织学不明确,但在疾病过程中所有患者均发展为 HGG。采用受试者工作特征(ROC)曲线分析评估最大和平均肿瘤与脑比值(TBR(max)/TBR(mean))摄取的诊断价值,以区分肿瘤性病变和 NNL、HGG 和 LGG、高级别肿瘤(HGG 或淋巴瘤)和 LGG 或 NNL。

结果

肿瘤性病变的(18)F-FET 摄取明显高于 NNL(TBR(max),3.0 ± 1.3 比 1.8 ± 0.5;P <0.001)。ROC 分析得出 TBR(max)的最佳截断值为 2.5,用于区分肿瘤性病变和 NNL(灵敏度 57%,特异性 92%,准确性 62%,曲线下面积[AUC]0.76;95%置信区间[CI]0.68-0.84)。阳性预测值(PPV)为 98%,阴性预测值(NPV)为 27%。用于区分 HGG 和 LGG(TBR(max),3.6 ± 1.4 比 2.4 ± 1.0;P <0.001)的 TBR(max)ROC 分析得出 TBR(max)的最佳截断值为 2.5(灵敏度 80%,特异性 65%,准确性 72%,AUC 0.77;PPV 66%,NPV 79%,95%CI 0.68-0.84)。用 TBR(max)截断值 2.5 最佳区分高级别肿瘤(HGG 或淋巴瘤)和 NNL 和 LGG(灵敏度 79%,特异性 72%,准确性 75%,AUC 0.79;PPV 65%,NPV 84%,95%CI 0.71-0.86)。TBR(mean)的结果相似,截断值为 1.9。

结论

(18)F-FET 摄取比值为脑病变的鉴别和胶质瘤的分级提供了有价值的附加信息。(18)F-FET 摄取 TBR(max)超过阈值 2.5 时,对肿瘤性病变的检测具有较高的 PPV,并支持进行有创性操作的必要性,例如活检或手术切除。低摄取(TBR(max) < 2.5)极不可能为高级别肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验