Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Bolshoy Karetny per, Moscow, 127994, Russia.
Biol Direct. 2012 Aug 9;7:26. doi: 10.1186/1745-6150-7-26.
In previous work, we introduced a concept, a mathematical model and its computer realization that describe the interaction between bacterial and phage type RNA polymerases, protein factors, DNA and RNA secondary structures during transcription, including transcription initiation and termination. The model accurately reproduces changes of gene transcription level observed in polymerase sigma-subunit knockout and heat shock experiments in plant plastids. The corresponding computer program and a user guide are available at http://lab6.iitp.ru/en/rivals. Here we apply the model to the analysis of transcription and (partially) translation processes in the mitochondria of frog, rat and human. Notably, mitochondria possess only phage-type polymerases. We consider the entire mitochondrial genome so that our model allows RNA polymerases to complete more than one circle on the DNA strand.
Our model of RNA polymerase interaction during transcription initiation and elongation accurately reproduces experimental data obtained for plastids. Moreover, it also reproduces evidence on bulk RNA concentrations and RNA half-lives in the mitochondria of frog, human with or without the MELAS mutation, and rat with normal (euthyroid) or hyposecretion of thyroid hormone (hypothyroid). The transcription characteristics predicted by the model include: (i) the fraction of polymerases terminating at a protein-dependent terminator in both directions (the terminator polarization), (ii) the binding intensities of the regulatory protein factor (mTERF) with the termination site and, (iii) the transcription initiation intensities (initiation frequencies) of all promoters in all five conditions (frog, healthy human, human with MELAS syndrome, healthy rat, and hypothyroid rat with aberrant mtDNA methylation). Using the model, absolute levels of all gene transcription can be inferred from an arbitrary array of the three transcription characteristics, whereas, for selected genes only relative RNA concentrations have been experimentally determined. Conversely, these characteristics and absolute transcription levels can be obtained using relative RNA concentrations and RNA half-lives known from various experimental studies. In this case, the "inverse problem" is solved with multi-objective optimization.
In this study, we demonstrate that our model accurately reproduces all relevant experimental data available for plant plastids, as well as the mitochondria of chordates. Using experimental data, the model is applied to estimate binding intensities of phage-type RNA polymerases to their promoters as well as predicting terminator characteristics, including polarization. In addition, one can predict characteristics of phage-type RNA polymerases and the transcription process that are difficult to measure directly, e.g., the association between the promoter's nucleotide composition and the intensity of polymerase binding. To illustrate the application of our model in functional predictions, we propose a possible mechanism for MELAS syndrome development in human involving a decrease of Phe-tRNA, Val-tRNA and rRNA concentrations in the cell. In addition, we describe how changes in methylation patterns of the mTERF binding site and three promoters in hypothyroid rat correlate with changes in intensities of the mTERF binding and transcription initiations. Finally, we introduce an auxiliary model to describe the interaction between polysomal mRNA and ribonucleases.
在之前的工作中,我们引入了一个概念、一个数学模型及其计算机实现,用于描述细菌和噬菌体类型 RNA 聚合酶、蛋白质因子、DNA 和 RNA 二级结构之间在转录过程中的相互作用,包括转录起始和终止。该模型准确地再现了在植物质体中聚合酶 σ 亚基敲除和热休克实验中观察到的基因转录水平的变化。相应的计算机程序和用户指南可在 http://lab6.iitp.ru/en/rivals 上获得。在这里,我们将该模型应用于蛙、鼠和人线粒体中的转录和(部分)翻译过程的分析。值得注意的是,线粒体只拥有噬菌体类型的聚合酶。我们考虑整个线粒体基因组,因此我们的模型允许 RNA 聚合酶在 DNA 链上完成多个循环。
我们在转录起始和延伸过程中 RNA 聚合酶相互作用的模型准确地再现了在质体中获得的实验数据。此外,它还再现了在蛙、人(有或没有 MELAS 突变)和大鼠(正常(甲状腺功能正常)或甲状腺激素分泌不足(甲状腺功能减退))线粒体中 bulk RNA 浓度和 RNA 半衰期的证据。该模型预测的转录特征包括:(i)在两个方向上在蛋白依赖性终止子处终止的聚合酶的分数(终止子极化),(ii)调节蛋白因子(mTERF)与终止位点的结合强度,以及(iii)所有启动子的转录起始强度(起始频率)在所有五种条件下(蛙、健康人、患有 MELAS 综合征的人、健康大鼠和甲状腺激素分泌不足的大鼠,其 mtDNA 甲基化异常)。使用该模型,可以从任意三个转录特征的组合中推断出所有基因转录的绝对水平,而对于选定的基因,只有相对 RNA 浓度已通过实验确定。相反,可以使用从各种实验研究中获得的相对 RNA 浓度和 RNA 半衰期来获得这些特征和绝对转录水平。在这种情况下,使用多目标优化解决了“逆问题”。
在这项研究中,我们证明了我们的模型准确地再现了所有可用于植物质体以及脊索动物线粒体的相关实验数据。使用实验数据,该模型被应用于估计噬菌体类型 RNA 聚合酶与其启动子的结合强度,以及预测终止子特征,包括极化。此外,还可以预测噬菌体类型 RNA 聚合酶和转录过程的特征,这些特征很难直接测量,例如启动子的核苷酸组成与聚合酶结合强度之间的关系。为了说明我们的模型在功能预测中的应用,我们提出了一种可能的机制,用于解释人类 MELAS 综合征的发展,涉及细胞中苯丙氨酸 tRNA、缬氨酸 tRNA 和 rRNA 浓度的降低。此外,我们描述了甲状腺功能减退大鼠中线粒体 mTERF 结合位点和三个启动子的甲基化模式变化如何与 mTERF 结合和转录起始强度的变化相关。最后,我们引入了一个辅助模型来描述多核糖体 mRNA 与核糖核酸酶之间的相互作用。