Department of Chemistry and Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.
J Am Chem Soc. 2012 Sep 5;134(35):14382-9. doi: 10.1021/ja3033197. Epub 2012 Aug 27.
We show a simple method to control both the stability and the self-assembly behavior of DNA structures. By connecting two adjacent duplexes with small synthetic linkers, factors such as linker rigidity and DNA strand orientation can increase the thermal denaturation temperature of 17 base-pair duplexes by up to 10 °C, and significantly increase the cooperativity of melting of the two duplexes. The same DNA sequence can thus be tuned to melt at vastly different temperatures by selecting the linker structure and DNA-to-linker connectivity. In addition, a small rigid m-triphenylene linker directly affects the self-assembly product distribution. With this linker, changes in the orientation of the linked strands (e.g., 5'3' vs 3'3') can lead to dramatic changes in the self-assembly behavior, from the formation of cyclic dimer and tetramer to higher-order oligomers. These variations can be readily predicted using a simple strand-end alignment model.
我们展示了一种简单的方法来控制 DNA 结构的稳定性和自组装行为。通过用小的合成连接子连接两个相邻的双链体,可以增加 17 个碱基对双链体的热变性温度高达 10°C,并且显著增加双链体的熔融协同性。通过选择连接子结构和 DNA 与连接子的连接性,可以将相同的 DNA 序列调谐到在非常不同的温度下熔融。此外,一个小的刚性 m-三联苯连接子直接影响自组装产物的分布。使用这种连接子,连接链的方向(例如,5'3' 与 3'3')的变化会导致自组装行为的显著变化,从环状二聚体和四聚体的形成到更高阶的寡聚物。这些变化可以使用简单的链端对齐模型来轻松预测。