Gandsman E J, North D L, Bough E W
Thomas Jefferson University Hospital, Philadelphia, PA.
Phys Med Biol. 1990 Nov;35(11):1467-76. doi: 10.1088/0031-9155/35/11/003.
The relationship between the ejection fractions calculated from 'uncorrected' radionuclide time activity curves (UEF) and angiographic ejection fractions (AEF) in 200 catheterized patients yielded the regression equation AEF = 1.74 UEF + 0.21. It follows from this linear relationship that the left ventricular ejection fraction can be estimated by linear regression without explicit background correction: RREF = 1.74 UEF + 0.21, where RREF is the radionuclide regression ejection fraction. We first investigated the possibility that changes in photon self-attenuation within the cardiac chambers cause the observed mathematical characteristics of the cardiac background, B. Self-attenuation was calculated for cylindrical and spherical ventricular models. The results were insensitive to the particular geometry and would have only a small effect on the observed EF. Alternatively, the 'background' may result from extra-ventricular radiation scattering from the heart into the detector. If we assume that B should be proportional to the ventricular scattering volume, Bd = Kd EDC for diastole and Bs = Ks ESC for systole, the background corrected ejection fraction will be BCEF = K UEF + (1-K) where K = (1-Ks)/(1-Kd). This agrees with the form of the empirical regression equation.
在200例接受导管检查的患者中,由“未校正的”放射性核素时间 - 活度曲线(UEF)计算得到的射血分数与血管造影射血分数(AEF)之间的关系得出回归方程AEF = 1.74 UEF + 0.21。从这种线性关系可以得出,左心室射血分数可通过线性回归进行估计,无需明确的本底校正:RREF = 1.74 UEF + 0.21,其中RREF是放射性核素回归射血分数。我们首先研究了心腔内光子自衰减的变化导致观察到的心脏本底B的数学特征的可能性。计算了圆柱形和球形心室模型的自衰减。结果对特定几何形状不敏感,并且对观察到的射血分数影响很小。另外,“本底”可能是由于心脏外的辐射散射到探测器中。如果我们假设B应该与心室散射体积成正比,舒张期Bd = Kd EDC,收缩期Bs = Ks ESC,那么本底校正射血分数将为BCEF = K UEF + (1 - K),其中K = (1 - Ks)/(1 - Kd)。这与经验回归方程的形式一致。