多尺度 RBF 网络训练的局部和全局误差统计信息的集成:对遥感数据的评估。
Integrating local and global error statistics for multi-scale RBF network training: an assessment on remote sensing data.
机构信息
Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America.
出版信息
PLoS One. 2012;7(8):e40093. doi: 10.1371/journal.pone.0040093. Epub 2012 Aug 2.
BACKGROUND
This study discusses the theoretical underpinnings of a novel multi-scale radial basis function (MSRBF) neural network along with its application to classification and regression tasks in remote sensing. The novelty of the proposed MSRBF network relies on the integration of both local and global error statistics in the node selection process.
METHODOLOGY AND PRINCIPAL FINDINGS
The method was tested on a binary classification task, detection of impervious surfaces using a Landsat satellite image, and a regression problem, simulation of waveform LiDAR data. In the classification scenario, results indicate that the MSRBF is superior to existing radial basis function and back propagation neural networks in terms of obtained classification accuracy and training-testing consistency, especially for smaller datasets. The latter is especially important as reference data acquisition is always an issue in remote sensing applications. In the regression case, MSRBF provided improved accuracy and consistency when contrasted with a multi kernel RBF network.
CONCLUSION AND SIGNIFICANCE
Results highlight the potential of a novel training methodology that is not restricted to a specific algorithmic type, therefore significantly advancing machine learning algorithms for classification and regression tasks. The MSRBF is expected to find numerous applications within and outside the remote sensing field.
背景
本研究讨论了一种新型多尺度径向基函数(MSRBF)神经网络的理论基础及其在遥感分类和回归任务中的应用。所提出的 MSRBF 网络的新颖之处在于在节点选择过程中集成了局部和全局误差统计信息。
方法和主要发现
该方法在一个二进制分类任务、使用 Landsat 卫星图像检测不透水面和一个回归问题、模拟波形激光雷达数据上进行了测试。在分类场景中,结果表明,MSRBF 在获得的分类准确性和训练-测试一致性方面优于现有的径向基函数和反向传播神经网络,尤其是对于较小的数据集。这一点尤为重要,因为在遥感应用中,参考数据的获取总是一个问题。在回归情况下,与多核 RBF 网络相比,MSRBF 提供了更高的准确性和一致性。
结论和意义
结果强调了一种新的训练方法的潜力,这种方法不受特定算法类型的限制,因此极大地推动了分类和回归任务的机器学习算法。MSRBF 有望在遥感领域内外找到众多应用。