Billings Stephen A, Wei Hua-Liang, Balikhin Michael A
Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
Neural Netw. 2007 Dec;20(10):1081-94. doi: 10.1016/j.neunet.2007.09.017. Epub 2007 Oct 16.
A novel modelling framework is proposed for constructing parsimonious and flexible multiscale radial basis function networks (RBF). Unlike a conventional standard single scale RBF network, where all the basis functions have a common kernel width, the new network structure adopts multiscale Gaussian functions as the bases, where each selected centre has multiple kernel widths, to provide more flexible representations with better generalization properties for general nonlinear dynamical systems. As a direct extension of the traditional single scale Gaussian networks, the new multiscale network is easy to implement and is quick to learn using standard learning algorithms. A k-means clustering algorithm and an improved orthogonal least squares (OLS) algorithm are used to determine the unknown parameters in the network model including the centres and widths of the basis functions, and the weights between the basis functions. It is demonstrated that the new network can lead to a parsimonious model with much better generalization property compared with the traditional single width RBF networks.
提出了一种新颖的建模框架,用于构建简约且灵活的多尺度径向基函数网络(RBF)。与传统的标准单尺度RBF网络不同,在传统网络中所有基函数具有共同的核宽度,新的网络结构采用多尺度高斯函数作为基函数,其中每个选定的中心具有多个核宽度,以便为一般非线性动力系统提供更灵活的表示和更好的泛化特性。作为传统单尺度高斯网络的直接扩展,新的多尺度网络易于实现,并且使用标准学习算法学习速度很快。使用k均值聚类算法和改进的正交最小二乘法(OLS)算法来确定网络模型中的未知参数,包括基函数的中心和宽度以及基函数之间的权重。结果表明,与传统的单宽度RBF网络相比,新网络可以得到具有更好泛化特性的简约模型。
Neural Netw. 2007-12
IEEE Trans Syst Man Cybern B Cybern. 2009-2
Neural Netw. 2007-9
ISA Trans. 2010-5-14
Neural Comput. 2008-3
Neural Netw. 2004-1
Entropy (Basel). 2020-9-30