文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

广义多尺度径向基函数网络

Generalized multiscale radial basis function networks.

作者信息

Billings Stephen A, Wei Hua-Liang, Balikhin Michael A

机构信息

Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.

出版信息

Neural Netw. 2007 Dec;20(10):1081-94. doi: 10.1016/j.neunet.2007.09.017. Epub 2007 Oct 16.


DOI:10.1016/j.neunet.2007.09.017
PMID:17993257
Abstract

A novel modelling framework is proposed for constructing parsimonious and flexible multiscale radial basis function networks (RBF). Unlike a conventional standard single scale RBF network, where all the basis functions have a common kernel width, the new network structure adopts multiscale Gaussian functions as the bases, where each selected centre has multiple kernel widths, to provide more flexible representations with better generalization properties for general nonlinear dynamical systems. As a direct extension of the traditional single scale Gaussian networks, the new multiscale network is easy to implement and is quick to learn using standard learning algorithms. A k-means clustering algorithm and an improved orthogonal least squares (OLS) algorithm are used to determine the unknown parameters in the network model including the centres and widths of the basis functions, and the weights between the basis functions. It is demonstrated that the new network can lead to a parsimonious model with much better generalization property compared with the traditional single width RBF networks.

摘要

提出了一种新颖的建模框架,用于构建简约且灵活的多尺度径向基函数网络(RBF)。与传统的标准单尺度RBF网络不同,在传统网络中所有基函数具有共同的核宽度,新的网络结构采用多尺度高斯函数作为基函数,其中每个选定的中心具有多个核宽度,以便为一般非线性动力系统提供更灵活的表示和更好的泛化特性。作为传统单尺度高斯网络的直接扩展,新的多尺度网络易于实现,并且使用标准学习算法学习速度很快。使用k均值聚类算法和改进的正交最小二乘法(OLS)算法来确定网络模型中的未知参数,包括基函数的中心和宽度以及基函数之间的权重。结果表明,与传统的单宽度RBF网络相比,新网络可以得到具有更好泛化特性的简约模型。

相似文献

[1]
Generalized multiscale radial basis function networks.

Neural Netw. 2007-12

[2]
A new RBF neural network with boundary value constraints.

IEEE Trans Syst Man Cybern B Cybern. 2009-2

[3]
Sensitivity analysis applied to the construction of radial basis function networks.

Neural Netw. 2005-9

[4]
An enhanced self-organizing incremental neural network for online unsupervised learning.

Neural Netw. 2007-10

[5]
Significant vector learning to construct sparse kernel regression models.

Neural Netw. 2007-9

[6]
Stable modeling based control methods using a new RBF network.

ISA Trans. 2010-5-14

[7]
Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.

J Chem Inf Model. 2007

[8]
A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.

Neural Netw. 2013-6-14

[9]
Dynamics of learning near singularities in layered networks.

Neural Comput. 2008-3

[10]
Dynamics of periodic delayed neural networks.

Neural Netw. 2004-1

引用本文的文献

[1]
Evaluation of hydrogen production via steam reforming and partial oxidation of dimethyl ether using response surface methodology and artificial neural network.

Sci Rep. 2024-7-6

[2]
Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality.

Entropy (Basel). 2020-9-30

[3]
Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals.

PLoS One. 2020-1-10

[4]
Integrating local and global error statistics for multi-scale RBF network training: an assessment on remote sensing data.

PLoS One. 2012-8-2

[5]
The neutrophil's eye-view: inference and visualisation of the chemoattractant field driving cell chemotaxis in vivo.

PLoS One. 2012-4-26

[6]
Prediction of thermostability from amino acid attributes by combination of clustering with attribute weighting: a new vista in engineering enzymes.

PLoS One. 2011-8-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索