Department of Computer and Mathematical Sciences, University of Toronto at Scarborough, Toronto, Ont., Canada.
J Biol Dyn. 2009 Jul;3(4):387-409. doi: 10.1080/17513750802485007.
In this paper, we rigorously analyse an ordinary differential equation system that models fighting the HIV-1 virus with a genetically modified virus. We show that when the basic reproduction ratio ℛ(0)<1, then the infection-free equilibrium E (0) is globally asymptotically stable; when ℛ(0)>1, E (0) loses its stability and there is the single-infection equilibrium E (s). If ℛ(0)∈(1, 1+δ) where δ is a positive constant explicitly depending on system parameters, then the single-infection equilibrium E (s) that is globally asymptotically stable, while when ℛ(0)>1+δ, E (s) becomes unstable and the double-infection equilibrium E (d) comes into existence. When ℛ(0) is slightly larger than 1+δ, E (d) is stable and it loses its stability via Hopf bifurcation when ℛ(0) is further increased in some ways. Through a numerical example and by applying a normal form theory, we demonstrate how to determine the bifurcation direction and stability, as well as the estimates of the amplitudes and the periods of the bifurcated periodic solutions. We also perform numerical simulations which agree with the theoretical results. The approaches we use here are a combination of analysis of characteristic equations, fluctuation lemma, Lyapunov function and normal form theory.
本文严格分析了一个用遗传修饰病毒抗击 HIV-1 病毒的常微分方程组模型。我们证明,当基本繁殖数 ℛ(0)<1 时,感染无病毒平衡点 E (0) 全局渐近稳定;当 ℛ(0)>1 时,E (0) 失去稳定性,存在单一感染平衡点 E (s)。如果 ℛ(0)∈(1, 1+δ),其中 δ 是一个依赖于系统参数的正常数,那么全局渐近稳定的单一感染平衡点 E (s),而当 ℛ(0)>1+δ 时,E (s) 变得不稳定,双感染平衡点 E (d) 出现。当 ℛ(0)略大于 1+δ 时,E (d) 是稳定的,当 ℛ(0)以某种方式进一步增加时,它通过 Hopf 分岔失去稳定性。通过数值示例并应用正规形理论,我们展示了如何确定分岔的方向和稳定性,以及分岔周期解的幅度和周期的估计。我们还进行了数值模拟,与理论结果相符。我们在这里使用的方法是特征方程分析、波动引理、李雅普诺夫函数和正规形理论的结合。