Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS One. 2012;7(8):e42602. doi: 10.1371/journal.pone.0042602. Epub 2012 Aug 3.
Dorsal root ganglia (DRG) somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio) DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available.
METHODOLOGY/PRINCIPAL FINDINGS: We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na(+) currents (rapidly- and slowly-inactivating) were discovered. Rapidly-inactivating I(Na) were preferentially expressed in relatively large neurons, while slowly-inactivating I(Na) was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these I(Na) components. Voltage-gated Ca(2+) currents (I(Ca)) were primarily (87%) comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels. A few DRG neurons (8%) displayed a miniscule low-voltage-activated component. I(Ca) in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability.
CONCLUSIONS/SIGNIFICANCE: Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and thus provide a basis for future studies.
来自啮齿动物的背根神经节(DRG)体提供了一个极好的模型系统,用于使用电生理研究来研究离子通道特性和调制。与其他脊椎动物一样,斑马鱼(Danio rerio)DRG 是节段性组织的,并且具有分支到每个体节的外周轴突。然而,与它们的哺乳动物对应物相比,斑马鱼 DRG 感觉神经元的电特性相对来说还没有被探索过,因为没有适合电生理研究的制剂。
方法/主要发现:我们展示了来自表达 Isl2b 启动子驱动的 EGFP 的幼年斑马鱼的酶解分离的 DRG 神经元,这些神经元很容易通过荧光显微镜识别,并且适合常规的全细胞膜片钳研究。发现了两种动力学上不同的 TTX 敏感的 Na+电流(快速和缓慢失活)。快速失活的 I(Na)主要在相对较大的神经元中表达,而缓慢失活的 I(Na)则在较小的 DRG 神经元中更为普遍。RT-PCR 分析表明,zscn1aa/ab、zscn8aa/ab、zscn4ab 和 zscn5Laa 可能是这些 I(Na)成分的候选者。电压门控 Ca2+电流(I(Ca))主要(87%)由来自 ω-芋螺毒素 GVIA 敏感的 Ca(V)2.2(N 型)Ca2+通道的高电压激活成分组成。少数 DRG 神经元(8%)显示出微小的低电压激活成分。斑马鱼 DRG 神经元中的 I(Ca)通过电压依赖性或非依赖性 G 蛋白信号通路被神经递质调制,具有大的细胞间反应变异性。
结论/意义:我们目前的结果表明,与高等脊椎动物一样,斑马鱼 DRG 神经元是异质的,由功能上不同的亚群组成,这些亚群可能与不同的感觉模态相关。这些发现首次比较了斑马鱼和啮齿动物 DRG 神经元的电特性,为未来的研究提供了基础。