Suppr超能文献

靶向敲除 Kcne2 可损害小鼠丘脑皮质回路中的 HCN 通道功能。

Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits.

机构信息

Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America.

出版信息

PLoS One. 2012;7(8):e42756. doi: 10.1371/journal.pone.0042756. Epub 2012 Aug 3.

Abstract

BACKGROUND

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, I(h), which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.

METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of Kcne2 gene deletion on I(h) properties and excitability in ventrobasal (VB) and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+) and Kcne2(-/-) mice. Kcne2 deletion shifted the voltage-dependence of I(h) activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h) density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4), although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/-) neurons.

CONCLUSIONS/SIGNIFICANCE: Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of various disorders of consciousness.

摘要

背景

超极化激活、环核苷酸门控 (HCN) 通道产生起搏电流 I(h),调节神经元兴奋性、爆发放电活动、节律生成和突触整合。HCN 激活的生理后果取决于内源性调节剂对通道门控的调节以及由主要和辅助亚基组成的通道复合物的稳定。KCNE2 是一种电压门控钾通道辅助亚基,也调节异源表达的 HCN 通道;KCNE2 是否调节神经元 HCN 通道功能尚不清楚。

方法/主要发现:我们使用来自 Kcne2(+/+)和 Kcne2(-/-)小鼠的脑片研究了 Kcne2 基因缺失对腹侧基底 (VB) 和皮质 6 层锥体神经元 I(h) 特性和兴奋性的影响。Kcne2 缺失将 I(h) 激活的电压依赖性移至更超极化的电位,减慢门控动力学,并降低 I(h) 密度。Kcne2 缺失与全脑表达的 HCN1 和 HCN2(但不是 HCN4)减少有关,尽管全脑裂解物的共免疫沉淀未能检测到 KCNE2 与 HCN1 或 2 的相互作用。Kcne2 缺失还增加了亚阈电压反应的输入电阻和时间总和;这种增加的内在兴奋性增强了对 4-氨基吡啶的爆发放电。爆发持续时间在皮质丘脑神经元中增加,但在丘脑皮质神经元中没有增加,表明皮质兴奋性输入到丘脑增加;这种增强的兴奋性并不是由于谷氨酸释放机制的变化,因为 Kcne2(-/-)神经元中的微小 EPSC 频率没有改变。

结论/意义:KCNE2 的缺失导致 HCN 通道功能下调,与皮质-丘脑-皮质环路中神经元的兴奋性增加有关。这些发现进一步了解了与认知密切相关的大脑回路的正常生理学,并对我们理解各种意识障碍有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d9/3411840/269b1d8c1c7b/pone.0042756.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验