Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA.
J Am Chem Soc. 2012 Sep 5;134(35):14423-9. doi: 10.1021/ja304199x. Epub 2012 Aug 23.
We report on the density functional theory aided design of a variety of organic ferroelectric and multiferroic materials by functionalizing crystallized transition-metal molecular sandwich nanowires with chemical groups such as -F, -Cl, -CN, -NO(2), ═O, and -OH. Such functionalized polar wires exhibit molecular reorientation in response to an electric field. Ferroelectric polarizations as large as 23.0 μC/cm(2) are predicted in crystals based on fully hydroxylized sandwich nanowires. Furthermore, we find that organic nanowires formed by sandwiching transition-metal atoms in croconic and rhodizonic acids, dihydroxybenzoquinone, dichloro-dihydroxy-p-benzoquinone, or benzene decorated by -COOH groups exhibit ordered magnetic moments, leading to a multiferroic organometallic crystal. When crystallized through hydrogen bonds, the microscopic molecular reorientation translates into a switchable polarization through proton transfer. A giant interface magnetoelectric response that is orders of magnitude greater than previously reported for conventional oxide heterostructure interfaces is predicted.
我们通过在结晶过渡金属分子夹层纳米线中引入-F、-Cl、-CN、-NO2、═O 和-OH 等化学基团,报告了通过密度泛函理论设计各种有机铁电和多铁材料。这种功能化的极性纳米线在电场作用下会发生分子重排。基于完全羟基化夹层纳米线的晶体预测出高达 23.0 μC/cm2 的铁电极化。此外,我们发现由 croconic 和 rhodizonic 酸、二羟基苯醌、二氯二羟基对苯醌或苯中夹心过渡金属原子形成的有机纳米线被-COOH 基团修饰后,表现出有序的磁矩,从而形成一个多铁有机金属晶体。当通过氢键结晶时,微观分子重排通过质子转移转化为可切换的极化。预计会出现比以前报道的传统氧化物异质结构界面大几个数量级的巨大界面磁电响应。