Lu Chengliang, Wu Menghao, Lin Lin, Liu Jun-Ming
School of Physics & Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.
Natl Sci Rev. 2019 Jul;6(4):653-668. doi: 10.1093/nsr/nwz091. Epub 2019 Jul 10.
Multiferroics, where multiple ferroic orders coexist and are intimately coupled, promise novel applications in conceptually new devices on one hand, and on the other hand provide fascinating physics that is distinctly different from the physics of high- superconductors and colossal magnetoresistance manganites. In this mini-review, we highlight the recent progress of single-phase multiferroics in the exploration of new materials, efficient roadmaps for functionality enhancement, new phenomena beyond magnetoelectric coupling, and underlying novel physics. In the meantime, a slightly more detailed description is given of several multiferroics with ferrimagnetic orders and double-layered perovskite structure and also of recently emerging 2D multiferroics. Some emergent phenomena such as topological vortex domain structure, non-reciprocal response, and hybrid mechanisms for multiferroicity engineering and magnetoelectric coupling in various types of multiferroics will be briefly reviewed.
多铁性材料中多种铁性序共存且紧密耦合,一方面有望在概念全新的器件中实现新颖应用,另一方面展现出与高温超导体及巨磁电阻锰氧化物的物理特性截然不同的迷人物理现象。在本综述中,我们重点介绍单相多铁性材料在新材料探索、功能增强的有效路线图、磁电耦合之外的新现象以及潜在新物理方面的最新进展。同时,对具有亚铁磁序和双层钙钛矿结构的几种多铁性材料以及最近出现的二维多铁性材料进行了稍详细的描述。还将简要回顾各种类型多铁性材料中出现的一些现象,如拓扑涡旋畴结构、非互易响应以及多铁性工程和磁电耦合的混合机制。