Isaac Newton Institute, 20 Clarkson Road, Cambridge, CB3 0EH, UK.
J Biol Dyn. 2010 Nov;4(6):594-606. doi: 10.1080/17513750903528192.
A two-parameter family of discrete models describing a predator-prey interaction is considered, which generalizes a model discussed by Murray, and originally due to Nicholson and Bailey, consisting of two coupled nonlinear difference equations. In contrast to the original case treated by Murray, where the two populations either die out or may display unbounded growth, the general member of this family displays a somewhat wider range of behaviour. In particular, the model has a nontrivial steady state which is stable for a certain range of parameter values, which is explicitly determined, and also undergoes a Neimark-Sacker bifurcation that produces an attracting invariant curve in some areas of the parameter space and a repelling one in others.
考虑了一个描述捕食者-被捕食者相互作用的离散模型的双参数族,它推广了 Murray 讨论的模型,最初是由 Nicholson 和 Bailey 提出的,由两个耦合的非线性差分方程组成。与 Murray 最初处理的情况不同,在原始情况下,两种种群要么灭绝,要么可能表现出无界增长,这个家族的一般成员表现出更广泛的行为范围。特别是,该模型具有一个非平凡的稳定状态,对于一定范围的参数值是稳定的,这是明确确定的,并且还经历了 Neimark-Sacker 分岔,在参数空间的某些区域产生吸引不变曲线,在其他区域产生排斥不变曲线。