Suppr超能文献

真核翻译延伸因子 3 的过表达会损害 Gcn2 蛋白的激活。

Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation.

机构信息

Institute of Natural Sciences, Massey University, Auckland 0745, New Zealand.

出版信息

J Biol Chem. 2012 Nov 2;287(45):37757-68. doi: 10.1074/jbc.M112.368266. Epub 2012 Aug 10.

Abstract

In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn(-) phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn(-) phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn(-) phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes.

摘要

在真核生物中,激酶 Gcn2(一般控制非阻遏物 2)对翻译起始因子 2α(eIF2α)的磷酸化是对氨基酸饥饿的关键反应。对饥饿的感应要求 Gcn2 直接与效应蛋白 Gcn1 接触,并且两者都必须与核糖体接触。我们提出,Gcn2 通过结合到核糖体的解码(A)位的无电荷 tRNA 激活,这种方式由核糖体结合的 Gcn1 促进。蛋白质合成需要真核延伸因子(eEFs)与核糖体的周期性结合。Gcn1 和 Gcn2 是大型蛋白质,这就提出了翻译和监测氨基酸可用性是否可以在同一个核糖体上进行的问题。Gcn1 的核糖体结合结构域的一部分与 eEF3 的一个核糖体结合结构域具有同源性,这表明这些蛋白质在核糖体上利用重叠的结合位点,因此不能同时在同一个核糖体上发挥作用。支持这一观点,我们发现,酿酒酵母中 eEF3 的过表达减少了在氨基酸饥饿培养基上的生长(Gcn(-)表型)并降低了 eIF2α 的磷酸化,并且组成型激活的 Gcn2 的生长缺陷通过 eEF3 的过表达得到减弱。eEF3 的 HEAT 结构域或 C 末端的过表达足以赋予 Gcn(-)表型,并且这两个片段都具有核糖体亲和力。eEF3 的过表达对 Gcn1-核糖体的结合没有显著影响,但它加剧了 Gcn1-M7A 的 Gcn(-)表型,Gcn1-M7A 的核糖体亲和力降低。总的来说,这表明 eEF3 阻止了 Gcn1 在核糖体上的调节功能。我们提出,只有当 A 位结合无电荷 tRNA 时,Gcn1-Gcn2 复合物才能在核糖体上发挥作用,因为 eEF3 不会占据这些停滞的复合物。

相似文献

1
Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation.
J Biol Chem. 2012 Nov 2;287(45):37757-68. doi: 10.1074/jbc.M112.368266. Epub 2012 Aug 10.
5
Structure of Gcn1 bound to stalled and colliding 80S ribosomes.
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14). doi: 10.1073/pnas.2022756118.
6
Evidence that Yih1 resides in a complex with ribosomes.
FEBS J. 2012 May;279(10):1761-76. doi: 10.1111/j.1742-4658.2012.08553.x. Epub 2012 Apr 10.
7
Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity.
J Biol Chem. 2011 Oct 21;286(42):36568-79. doi: 10.1074/jbc.M111.248898. Epub 2011 Aug 17.
10
YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed.
J Biol Chem. 2004 Jul 16;279(29):29952-62. doi: 10.1074/jbc.M404009200. Epub 2004 May 4.

引用本文的文献

4
Structure of Gcn1 bound to stalled and colliding 80S ribosomes.
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14). doi: 10.1073/pnas.2022756118.
5
Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes.
Mol Cell. 2021 Feb 4;81(3):614-628.e4. doi: 10.1016/j.molcel.2020.11.033. Epub 2020 Dec 17.
6
A cellular handbook for collided ribosomes: surveillance pathways and collision types.
Curr Genet. 2021 Feb;67(1):19-26. doi: 10.1007/s00294-020-01111-w. Epub 2020 Oct 12.
7
Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control.
Mol Cell. 2020 Aug 20;79(4):588-602.e6. doi: 10.1016/j.molcel.2020.06.010. Epub 2020 Jul 1.
8
Control of Translation at the Initiation Phase During Glucose Starvation in Yeast.
Int J Mol Sci. 2019 Aug 19;20(16):4043. doi: 10.3390/ijms20164043.
10
Structures of translationally inactive mammalian ribosomes.
Elife. 2018 Oct 24;7:e40486. doi: 10.7554/eLife.40486.

本文引用的文献

1
Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity.
J Biol Chem. 2011 Oct 21;286(42):36568-79. doi: 10.1074/jbc.M111.248898. Epub 2011 Aug 17.
3
Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A.
J Biol Chem. 2006 Oct 27;281(43):32318-26. doi: 10.1074/jbc.M601899200. Epub 2006 Sep 5.
4
Structure of eEF3 and the mechanism of transfer RNA release from the E-site.
Nature. 2006 Oct 12;443(7112):663-8. doi: 10.1038/nature05126. Epub 2006 Aug 23.
5
Translational regulation of GCN4 and the general amino acid control of yeast.
Annu Rev Microbiol. 2005;59:407-50. doi: 10.1146/annurev.micro.59.031805.133833.
7
Global analysis of protein expression in yeast.
Nature. 2003 Oct 16;425(6959):737-41. doi: 10.1038/nature02046.
9
Dissection of the mechanism for the stringent factor RelA.
Mol Cell. 2002 Oct;10(4):779-88. doi: 10.1016/s1097-2765(02)00656-1.
10
Comparison of ARM and HEAT protein repeats.
J Mol Biol. 2001 May 25;309(1):1-18. doi: 10.1006/jmbi.2001.4624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验