Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
J Phys Chem B. 2012 Sep 6;116(35):10807-15. doi: 10.1021/jp306703f. Epub 2012 Aug 27.
Mass spectrometry techniques employing electron capture and electron transfer dissociation represent powerful approaches for the analysis of biological samples. Despite routine employment in analytical fields, the underlying physical processes dictating peptide fragmentation remain less understood. Among the most accepted mechanisms, the Cornell proposal of McLafferty postulates that the homolytic cleavage of N-C(α) bonds located in the peptide backbone occurs on the right (C-terminal) side of a hydrogen acceptor carbonyl group. Here, we illustrate that an alternative "enol" mechanism, based on a heterolytic N-C(α) bond cleavage located on the left (N-terminal) side of an acceptor carbonyl group, not only is thermodynamically viable but also often represents the energetically preferred cleavage route.
质谱技术采用电子俘获和电子转移解离,代表了分析生物样品的强大方法。尽管在分析领域得到了常规应用,但决定肽片段化的基础物理过程仍不太清楚。在最被接受的机制中,McLafferty 的康奈尔假设提出,位于肽骨架中的 N-C(α)键的均裂裂解发生在氢受体羰基的右侧(C 末端)。在这里,我们说明,基于位于受体羰基左侧(N 末端)的异裂 N-C(α)键裂解的替代“烯醇”机制,不仅在热力学上是可行的,而且通常代表能量上更有利的裂解途径。