Suppr超能文献

Cln1 和 Cln2 细胞周期蛋白功能差异的分子基础。

Molecular basis of the functional distinction between Cln1 and Cln2 cyclins.

机构信息

Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain.

出版信息

Cell Cycle. 2012 Aug 15;11(16):3117-31. doi: 10.4161/cc.21505. Epub 2012 Aug 14.

Abstract

Cln1 and Cln2 are very similar but not identical cyclins. In this work, we tried to describe the molecular basis of the functional distinction between Cln1 and Cln2. We constructed chimeric cyclins containing different fragments of Cln1 and Cln2 and performed several functional analysis that make it possible to distinguish between Cln1 or Cln2. We identified that region between amino acids 225 and 299 of Cln2 is not only necessary but also sufficient to confer Cln2 specific functionality compared with Cln1. We also studied Cln1 and Cln2 subcellular localization identifying additional differences between them. Both cyclins are distributed between the nucleus and the cytoplasm, but Cln1 shows stronger nuclear accumulation. Nuclear import of both cyclins is mediated by the classical nuclear import pathway and by sequences in the N-terminal end of the proteins. For Cln2, but not for Cln1, a nuclear export mechanism mediated by karyopherin Msn5 has been identified. Strikingly, Cln2 export depends on a Msn5-dependent NES between amino acids 225 and 299. In fact, the introduction of this region confers to Cln1 an export mechanism dependent on Msn5; importantly, this causes the gain of Cln2-specific cytosolic functions and the impairment of nuclear function. In short, a region from Cln2 controlling an Msn5-dependent nuclear export mechanism confers a specific functionality to Cln2 compared with Cln1.

摘要

Cln1 和 Cln2 非常相似,但不完全相同。在这项工作中,我们试图描述 Cln1 和 Cln2 功能区别的分子基础。我们构建了包含 Cln1 和 Cln2 不同片段的嵌合细胞周期蛋白,并进行了几项功能分析,这些分析使我们能够区分 Cln1 或 Cln2。我们确定 Cln2 氨基酸 225 到 299 之间的区域不仅是必需的,而且足以赋予 Cln2 与 Cln1 相比具有特定的功能。我们还研究了 Cln1 和 Cln2 的亚细胞定位,发现它们之间存在其他差异。两种细胞周期蛋白都分布在细胞核和细胞质之间,但 Cln1 显示出更强的核积累。两种细胞周期蛋白的核输入都是通过经典的核输入途径和蛋白质 N 端的序列来介导的。对于 Cln2,但不是 Cln1,已经确定了一种由核输出蛋白 Msn5 介导的核输出机制。引人注目的是,Cln2 的输出依赖于氨基酸 225 到 299 之间的 Msn5 依赖性 NES。事实上,引入这个区域赋予了 Cln1 一种依赖于 Msn5 的输出机制;重要的是,这导致了 Cln2 特有的细胞质功能的获得和核功能的损害。简而言之,控制 Msn5 依赖性核输出机制的 Cln2 区域赋予了 Cln2 与 Cln1 相比具有特定的功能。

相似文献

1
Molecular basis of the functional distinction between Cln1 and Cln2 cyclins.
Cell Cycle. 2012 Aug 15;11(16):3117-31. doi: 10.4161/cc.21505. Epub 2012 Aug 14.
2
Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5.
Cell Cycle. 2019 Mar;18(5):580-595. doi: 10.1080/15384101.2019.1578148. Epub 2019 Feb 11.
5
Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae.
EMBO J. 1995 Oct 2;14(19):4803-13. doi: 10.1002/j.1460-2075.1995.tb00162.x.
6
A comparative study of the degradation of yeast cyclins Cln1 and Cln2.
FEBS Open Bio. 2016 Dec 14;7(1):74-87. doi: 10.1002/2211-5463.12157. eCollection 2017 Jan.
7
Potential regulation of Ste20 function by the Cln1-Cdc28 and Cln2-Cdc28 cyclin-dependent protein kinases.
J Biol Chem. 1998 Sep 25;273(39):25089-97. doi: 10.1074/jbc.273.39.25089.
9
Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements.
Mol Cell Biol. 1994 Jul;14(7):4788-801. doi: 10.1128/mcb.14.7.4788-4801.1994.

引用本文的文献

1
Expression Dynamics and Genetic Compensation of Cell Cycle Paralogues in .
Cells. 2025 Mar 11;14(6):412. doi: 10.3390/cells14060412.
2
Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5.
Nat Commun. 2025 Mar 16;16(1):2580. doi: 10.1038/s41467-025-57752-3.
3
S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit.
mBio. 2022 Aug 30;13(4):e0142022. doi: 10.1128/mbio.01420-22. Epub 2022 Jun 16.
4
Mad3 modulates the G Cdk and acts as a timer in the Start network.
Sci Adv. 2022 May 6;8(18):eabm4086. doi: 10.1126/sciadv.abm4086.
6
Comprehensive and quantitative analysis of G1 cyclins. A tool for studying the cell cycle.
PLoS One. 2019 Jun 25;14(6):e0218531. doi: 10.1371/journal.pone.0218531. eCollection 2019.
8
Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5.
Cell Cycle. 2019 Mar;18(5):580-595. doi: 10.1080/15384101.2019.1578148. Epub 2019 Feb 11.
9
A comparative study of the degradation of yeast cyclins Cln1 and Cln2.
FEBS Open Bio. 2016 Dec 14;7(1):74-87. doi: 10.1002/2211-5463.12157. eCollection 2017 Jan.
10
Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities.
Mol Genet Genomics. 2016 Apr;291(2):913-34. doi: 10.1007/s00438-015-1157-9. Epub 2016 Jan 4.

本文引用的文献

1
Regulation of cell cycle transcription factor Swi5 by karyopherin Msn5.
Biochim Biophys Acta. 2012 Apr;1823(4):959-70. doi: 10.1016/j.bbamcr.2012.02.009. Epub 2012 Feb 21.
2
Oscillatory dynamics of cell cycle proteins in single yeast cells analyzed by imaging cytometry.
PLoS One. 2011;6(10):e26272. doi: 10.1371/journal.pone.0026272. Epub 2011 Oct 26.
3
Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes.
Curr Biol. 2011 Oct 11;21(19):1615-23. doi: 10.1016/j.cub.2011.08.033. Epub 2011 Sep 22.
4
Targeting and membrane insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae essential protein Rot1.
FEMS Yeast Res. 2010 Sep;10(6):639-47. doi: 10.1111/j.1567-1364.2010.00653.x. Epub 2010 Jun 7.
5
Yeast karyopherin Kap95 is required for cell cycle progression at Start.
BMC Cell Biol. 2010 Jun 29;11:47. doi: 10.1186/1471-2121-11-47.
6
Spatial regulation of the start repressor Whi5.
Cell Cycle. 2009 Sep 15;8(18):3010-8. Epub 2009 Sep 25.
7
Classical NLS proteins from Saccharomyces cerevisiae.
J Mol Biol. 2008 Jun 13;379(4):678-94. doi: 10.1016/j.jmb.2008.04.038. Epub 2008 Apr 22.
8
Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
Curr Biol. 2007 Jul 17;17(14):1181-9. doi: 10.1016/j.cub.2007.05.075. Epub 2007 Jul 5.
10
Structural biology of nucleocytoplasmic transport.
Annu Rev Biochem. 2007;76:647-71. doi: 10.1146/annurev.biochem.76.052705.161529.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验