Suppr超能文献

通过将蛋白质-蛋白质相互作用与蛋白质序列相似性进行杂交来鉴定新的蛋白质表型注释。

Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities.

作者信息

Chen Lei, Zhang Yu-Hang, Huang Tao, Cai Yu-Dong

机构信息

School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.

College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.

出版信息

Mol Genet Genomics. 2016 Apr;291(2):913-34. doi: 10.1007/s00438-015-1157-9. Epub 2016 Jan 4.

Abstract

Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications.

摘要

蛋白质表型研究是后基因组时代现代遗传学面临的核心挑战之一,因为对蛋白质表型进行有效且准确的研究是在微观层面识别功能性生物学过程的最关键步骤之一,这涉及多因素性状分析,并且对后基因组时代现代生物学的发展做出了巨大贡献。因此,我们开发了一种新的计算方法,该方法基于蛋白质 - 蛋白质相互作用网络识别酵母中与特定表型相关的新蛋白质。与一些现有的基于网络的计算方法不同,这些方法基于查询蛋白质在局部网络中的直接邻居来识别其表型,而我们提出的方法通过使用最短路径(SP)算法考虑全局网络上所有具有该表型的注释蛋白质,为特定表型识别新的候选蛋白质。通过置换检验以及它们与注释蛋白质的相互作用和序列相似性对识别出的蛋白质进行进一步筛选。我们将我们的方法与另一种广泛使用的称为带重启的随机游走(RWR)的方法进行了比较。分析并比较了通过我们的SP方法和RWR方法识别的每种表型的蛋白质的生物学功能。结果证实了我们新的蛋白质表型注释中有很大一部分,并且RWR方法显示出比SP方法更高的假阳性率。我们的方法对于预测涉及所有十一种聚类酵母表型的蛋白质同样有效,且假阳性率相当低。考虑到我们的支持材料和计算策略的通用性和可推广性,我们的方法可以进一步应用于研究其他生物体,并且我们预测的新功能可以为进一步的实验验证提供相关指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验